Pascal and Francis Bibliographic Databases

Help

Export

Selection :

Permanent link
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27761984

Prediction of Sweetness by Multilinear Regression Analysis and Support Vector Machine

Author
MIN ZHONG1 ; YANG CHONG1 ; XIANGLEI NIE1 ; AIXIA YAN1 ; QIPENG YUAN1
[1] State Key Laboratory of Chemical Resource Engineering, Dept. of Pharmaceutical Engineering, Beijing Univ. of Chemica Technology, Beijing, China
Source

Journal of food science. 2013, Vol 78, Num 7-9 ; S1445-S1450 ; ref : 1/4 p

CODEN
JFDSAZ
ISSN
0022-1147
Scientific domain
Food science technology
Publisher
Wiley, Hoboken, NJ
Publication country
United States
Document type
Article
Language
English
Author keyword
food properties multilinear regression (MLR) quantitative structure―activity relationships (QSAR) support vector machine (SVM) sweeteners
Keyword (fr)
Aliment Analyse régression Edulcorant Propriété Prédiction Relation structure activité Support Vecteur Additif alimentaire
Keyword (en)
Food Regression analysis Sweetener Properties Prediction Structure activity relation Support Vector Food additive
Keyword (es)
Alimento Análisis regresión Edulcorante Propiedad Predicción Relación estructura actividad Soporte Vector Aditivo alimentario
Classification
Pascal
002 Biological and medical sciences / 002A Fundamental and applied biological sciences. Psychology / 002A35 Food industries / 002A35A General aspects / 002A35A08 Food additives

Discipline
Agrifood industries
Origin
Inist-CNRS
Database
PASCAL
INIST identifier
27761984

Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS

Searching the Web