Pascal and Francis Bibliographic Databases

Help

Export

Selection :

Permanent link
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28640946

Model-based policy gradients with parameter-based exploration by least-squares conditional density estimation

Author
TANGKARATT, Voot1 ; MORI, Syogo1 ; ZHAO, Tingting1 ; MORIMOTO, Jun2 ; SUGIYAMA, Masashi1
[1] Tokyo Institute of Technology, Japan
[2] ATR Computational Neuroscience Labs, Japan
Source

Neural networks. 2014, Vol 57, pp 128-140, 13 p ; ref : 1/2 p

ISSN
0893-6080
Scientific domain
Cognition; Electronics; Computer science; Neurology
Publisher
Elsevier, Kidlington
Publication country
United Kingdom
Document type
Article
Language
English
Author keyword
Conditional density estimation Reinforcement learning Transition model estimation
Keyword (fr)
Algorithme recherche Apprentissage renforcé Architecture basée modèle Commande optimale Contrôle optimal Descente gradient Estimation densité Mesure densité Modélisation Méthode moindre carré Politique optimale Récompense Modèle donnée Théorie résonance adaptative
Keyword (en)
Search algorithm Reinforcement learning Model driven architecture Optimal control Optimal control (mathematics) Gradient descent Density estimation Density measurement Modeling Least squares method Optimal policy Reward Data models Adaptive resonance theory
Keyword (es)
Algoritmo búsqueda Aprendizaje reforzado Arquitectura basada modelo Control óptimo Control óptimo (matemáticas) Gradient bajada Estimación densidad Medición densidad Modelización Método cuadrado menor Política óptima Recompensa Modelo de datos Teoría de la resonancia adaptiva
Classification
Pascal
001 Exact sciences and technology / 001D Applied sciences / 001D02 Computer science; control theory; systems / 001D02C Artificial intelligence / 001D02C06 Connectionism. Neural networks

Discipline
Computer science : theoretical automation and systems
Origin
Inist-CNRS
Database
PASCAL
INIST identifier
28640946

Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS

Access to the document

Searching the Web