Pascal and Francis Bibliographic Databases

Help

Export

Selection :

Permanent link
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15758497

Effective strong dimension in algorithmic information and computational complexity

Author
ATHREYA, Krishna B1 2 ; HITCHCOCK, John M3 ; LUTZ, Jack H4 ; MAYORDOMO, Elvira5
[1] School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853, United States
[2] Departments of Mathematics and Statistics, Iowa State University, Ames, IA 50011, United States
[3] Department of Computer Science, University of Wyoming, Laramie, WY 82071, United States
[4] Department of Computer Science, Iowa State University, Ames, IA 50011, United States
[5] Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, 50015 Zaragoza, Spain
Conference title
STACS 2004 (Montpellier, 25-27 March 2004)
Conference name
Annual symposium on theoretical aspects of computer science (21 ; Montpellier 2004-03-25)
Author (monograph)
Diekert, Volker (Editor); Habib, Michel (Editor)
Source

Lecture notes in computer science. 2004, pp 632-643, 12 p ; ref : 37 ref

ISSN
0302-9743
ISBN
3-540-21236-1
Scientific domain
Computer science
Publisher
Springer, Berlin
Publication country
Germany
Document type
Conference Paper
Language
English
Keyword (fr)
Analogie Approche probabiliste Calculabilité Complexité algorithme Complexité calcul Complexité temps Compression donnée Dimension Hausdorff Dimension fractale Dualité Entropie Equation Kolmogorov Erreur systématique Espace état Grande déviation Informatique théorique Machine état fini Martingale Modèle 2 dimensions Méthode espace état Système dynamique Système fractal Temps polynomial Nombre réel
Keyword (en)
Analogy Probabilistic approach Computability Algorithm complexity Computational complexity Time complexity Data compression Hausdorff dimension Fractal dimension Duality Entropy Kolmogorov equation Bias State space Large deviation Computer theory Finite state machine Martingale Two dimensional model State space method Dynamical system Fractal system Polynomial time Real number
Keyword (es)
Analogía Enfoque probabilista Calculabilidad Complejidad algoritmo Complejidad computación Complejidad tiempo Compresión dato Dimensión Hausdorff Dimensión fractal Dualidad Entropía Ecuación Kolmogorov Error sistemático Espacio estado Gran desviación Informática teórica Máquina estado finito Martingale Modelo 2 dimensiones Método espacio estado Sistema dinámico Sistema fractal Tiempo polinomial Número real
Classification
Pascal
001 Exact sciences and technology / 001D Applied sciences / 001D02 Computer science; control theory; systems / 001D02A Theoretical computing / 001D02A01 General

Discipline
Computer science : theoretical automation and systems
Origin
Inist-CNRS
Database
PASCAL
INIST identifier
15758497

Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS

Access to the document

Searching the Web