Pascal and Francis Bibliographic Databases

Help

Export

Selection :

Permanent link
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18416270

Random integral representations for free-infinitely divisible and tempered stable distributions

Author
JUREK, Zbigniew J1
[1] Institute of Mathematics, University of Wroeław, 50-384 Wrocław, Poland
Source

Statistics & probability letters. 2007, Vol 77, Num 4, pp 417-425, 9 p ; ref : 13 ref

CODEN
SPLTDC
ISSN
0167-7152
Scientific domain
Mathematics
Publisher
Elsevier, Amsterdam
Publication country
Netherlands
Document type
Article
Language
English
Author keyword
60E10 60G51 Free-infinite divisibility Hilbert and Banach spaces Infinite divisible measure Levy process Lévy spectral measure Lévy-Khintchine formula Stable measures Tempered stable measures Z-Mixtures primary 60E07 secondary 60B11
Keyword (fr)
Condition suffisante Convolution Dimension infinie Espace Banach Espace Hilbert Loi infiniment divisible Loi stable Processus Lévy Représentation intégrale Théorie probabilité Divisibilité Espace mesure Formule Lévy Khintchine Mesure Lévy Mesure spectrale
Keyword (en)
Sufficient condition Convolution Infinite dimension Banach space Hilbert space Infinitely divisible law Stable law Lévy process Integral representation Probability theory Lévy measure
Keyword (es)
Condición suficiente Convolución Dimensión infinita Espacio Banach Espacio Hilbert Ley infinitamente divisible Ley estable Proceso Lévy Representación integral Teoría probabilidad
Classification
Pascal
001 Exact sciences and technology / 001A Sciences and techniques of general use / 001A02 Mathematics / 001A02H Probability and statistics / 001A02H01 Probability theory and stochastic processes / 001A02H01C Probability theory on algebraic and topological structures

Pascal
001 Exact sciences and technology / 001A Sciences and techniques of general use / 001A02 Mathematics / 001A02H Probability and statistics / 001A02H01 Probability theory and stochastic processes / 001A02H01F Distribution theory

Pascal
001 Exact sciences and technology / 001A Sciences and techniques of general use / 001A02 Mathematics / 001A02H Probability and statistics / 001A02H01 Probability theory and stochastic processes / 001A02H01H Stochastic processes

Discipline
Mathematics
Origin
Inist-CNRS
Database
PASCAL
INIST identifier
18416270

Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS

Access to the document

Searching the Web