Pascal and Francis Bibliographic Databases

Help

Export

Selection :

Permanent link
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1953266

Remotely sensed change detection based on artificial neural networks

Author
LONG DAI, X1 ; KHORRAM, S1
[1] Center for Earth Observation, North Carolina State University, Raleigh, North Carolina 27695-7106, United States
Source

Photogrammetric engineering and remote sensing. 1999, Vol 65, Num 10, pp 1187-1194 ; Illustration , Table ; ref : 36 ref

CODEN
PERSDV
ISSN
0099-1112
Scientific domain
Agronomy, agriculture, phytopathology; Ecology; Geology; Geophysics; Oceanography
Publisher
American Society for Photogrammetry and Remote Sensing, Bethesda, MD
Publication country
United States
Document type
Article
Language
English
Keyword (fr)
Algorithme Classification Détection LANDSAT Maximum vraisemblance Précision Réseau neuronal Thematic Mapper Télédétection spatiale Caroline du Nord Amérique du Nord Etats Unis
Keyword (en)
algorithms classification detection Landsat maximum likelihood accuracy neural networks Thematic Mapper Space remote sensing North Carolina North America United States
Keyword (es)
Algoritmo Clasificación Precisión Red neuronal Teledetección espacial Carolina del norte America del norte Estados Unidos
Classification
Pascal
001 Exact sciences and technology / 001E Earth, ocean, space / 001E01 Earth sciences / 001E01M Internal geophysics / 001E01M04 Applied geophysics

Discipline
Earth sciences
Origin
Inist-CNRS
Database
PASCAL
INIST identifier
1953266

Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS

Searching the Web