Pascal and Francis Bibliographic Databases

Help

Export

Selection :

Permanent link
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19997611

A wavelet particle approximation for McKean-Vlasov and 2D-Navier-Stokes statistical solutions

Author
CHI TRAN, Viet1
[1] Université Paris X-Nanterre, Equipe Modal'X, batiment G, 200 avenue de la République, 92101 Nanterre, France
Source

Stochastic processes and their applications. 2008, Vol 118, Num 2, pp 284-318, 35 p ; ref : 25 ref

CODEN
STOPB7
ISSN
0304-4149
Scientific domain
Computer science; Mathematics
Publisher
Elsevier Science, Amsterdam
Publication country
Netherlands
Document type
Article
Language
English
Author keyword
Statistical solution; 2D-Navier-Stokes equation; McKean-Vlasov equation; Stochastic particle approximation; Wavelet regression estimator; Numerical discretization scheme of SDEs primary 60K35; 42C40; secondary 76D06; 65C20; 65C35; 62G08
Keyword (fr)
Application Approximation stochastique Champ vectoriel Condition initiale Discrétisation Equation Navier Stokes Equation dérivée partielle Espérance conditionnelle Estimateur noyau Estimation moyenne Estimation statistique Loi conditionnelle Moment statistique Méthode discrétisation Méthode noyau Méthode numérique Méthode stochastique Processus stochastique Robustesse test Régression statistique Simulation numérique Solution faible Taux convergence Transformation ondelette Variable aléatoire 60H10 62Jxx 62L20 Coefficient dérivé Equation McKean Vlasov Estimation noyau
Keyword (en)
Application Stochastic approximation Vector field Initial condition Discretization Navier Stokes equation Partial differential equation Conditional expectation Kernel estimator Mean estimation Statistical estimation Conditional distribution Statistical moment Discretization method Kernel method Numerical method Stochastic method Stochastic process Test robustness Statistical regression Numerical simulation Weak solution Convergence rate Wavelet transformation Random variable Drift coefficient Kernel estimation
Keyword (es)
Aplicación Aproximación estocástica Campo vectorial Condición inicial Discretización Ecuación Navier Stokes Ecuación derivada parcial Esperanza condicional Estimación promedio Estimación estadística Ley condicional Momento estadístico Método discretización Método núcleo Método numérico Método estocástico Proceso estocástico Robustez prueba Regresión estadística Simulación numérica Solución débil Relación convergencia Transformación ondita Variable aléatoria
Classification
Pascal
001 Exact sciences and technology / 001A Sciences and techniques of general use / 001A02 Mathematics / 001A02H Probability and statistics / 001A02H01 Probability theory and stochastic processes / 001A02H01H Stochastic processes

Pascal
001 Exact sciences and technology / 001A Sciences and techniques of general use / 001A02 Mathematics / 001A02H Probability and statistics / 001A02H01 Probability theory and stochastic processes / 001A02H01I Stochastic analysis

Pascal
001 Exact sciences and technology / 001A Sciences and techniques of general use / 001A02 Mathematics / 001A02H Probability and statistics / 001A02H02 Statistics / 001A02H02J Linear inference, regression

Pascal
001 Exact sciences and technology / 001A Sciences and techniques of general use / 001A02 Mathematics / 001A02H Probability and statistics / 001A02H02 Statistics / 001A02H02L Sequential methods

Discipline
Mathematics
Origin
Inist-CNRS
Database
PASCAL
INIST identifier
19997611

Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS

Access to the document

Searching the Web