Pascal and Francis Bibliographic Databases

Help

Export

Selection :

Permanent link
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20416573

Almost Sure Stability of Stochastic Linear Systems with Ergodic Parameters. Discussions

Author
BOLZERN, Paolo1 ; COLANERI, Patrizio1 ; DE NICOLAO, Giuseppe2 ; MOST, Thomas (Commentator (written text)) 3 ; ISHII, Hideaki (Commentator (written text)) 4 ; XIAOJUN GENG (Commentator (written text)) 5
[1] Dipartimento di Elettronica e Informazione Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
[2] Dipartimento di Informatica e Sistemistica Universitá di Pavia, Pavia, Via Ferrata 1, 27100 Pavia, Italy
[3] Institute of Structural Mechanics, Bauhaus-University Weimar, Germany
[4] Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
[5] Department of Electrical and Computer Engineering, College of Engineering and Computer Science, California State University, Northridge, California, United States
Source

European journal of control. 2008, Vol 14, Num 2, pp 114-130, 17 p ; ref : 41 ref

ISSN
0947-3580
Scientific domain
Control theory, operational research
Publisher
Lavoisier, Cachan
Publication country
France
Document type
Article
Language
English
Author keyword
Monte Carlo methods Stochastic linear systems almost sure stability ergodic processes
Keyword (fr)
Commande H infini Ergodicité Fonction transfert Intervalle temps Matrice stochastique Matrice transition Méthode Monte Carlo Stabilité exponentielle Stabilité linéaire Stabilité stochastique Système dynamique Système incertain Système linéaire Valeur moyenne
Keyword (en)
H infinite control Ergodicity Transfer function Time interval Stochastic matrix Transition matrix Monte Carlo method Exponential stability Linear stability Stochastic stability Dynamical system Uncertain system Linear system Mean value
Keyword (es)
Control H infinito Ergodicidad Función traspaso Intervalo tiempo Matriz estocástica Matriz transición Método Monte Carlo Estabilidad exponencial Estabilidad lineal Estabilidad estocástica Sistema dinámico Sistema incierto Sistema lineal Valor medio
Classification
Pascal
001 Exact sciences and technology / 001D Applied sciences / 001D02 Computer science; control theory; systems / 001D02D Control theory. Systems / 001D02D06 Control system analysis

Discipline
Computer science : theoretical automation and systems
Origin
Inist-CNRS
Database
PASCAL
INIST identifier
20416573

Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS

Access to the document

Searching the Web