Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("Arrayed waveguide gratings")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Language

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 250

  • Page / 10
Export

Selection :

  • and

Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguidesDAI, D; LIU, L; WOSINSKI, L et al.Electronics Letters. 2006, Vol 42, Num 7, pp 400-402, issn 0013-5194, 3 p.Article

Arrayed Waveguide Gratings and Their Application Using Super-High-Δ Silica-Based Planar Lightwave Circuit Technology : Recent advances in integrated photonic devicesMARU, Koichi; UETSUKA, Hisato.IEICE transactions on electronics. 2009, Vol 92, Num 2, pp 224-230, issn 0916-8524, 7 p.Article

A simple channel gain equalizer design using an arrayed waveguide gratings based demultiplexerGAO ZHI XIAO; ZHIYI ZHANG; FENGGUO SUN et al.Proceedings of SPIE, the International Society for Optical Engineering. 2005, issn 0277-786X, isbn 0-8194-5989-5, 2Vol, Vol2, 59702N.1-59702N.8Conference Paper

Silica-based 2.5%-Δ arrayed waveguide grating using simple polarisation compensation method with core width adjustmentMARU, K; OKAWA, M; ABE, Y et al.Electronics Letters. 2007, Vol 43, Num 1, pp 26-27, issn 0013-5194, 2 p.Article

Ultra-small 40-channel athermal arrayed-waveguide grating module with low-loss groove designITOH, M; KAMEI, S; ISHII, M et al.Electronics Letters. 2008, Vol 44, Num 21, pp 1271-1272, issn 0013-5194, 2 p.Article

Miniaturization of passive devices for photonic integrationLEIITENS, Xaveer; SMIT, Meint.Proceedings of SPIE, the International Society for Optical Engineering. 2005, pp 60201Q.1-60201Q.6, issn 0277-786X, isbn 0-8194-6051-6, 1VolConference Paper

Large capacity optical router based on arrayed waveguide gratings and optical loop bufferSRIVASTAVA, Rajiv; RAJAT KUMAR SINGH; YATINDRA NATH SINGH et al.Optical and quantum electronics. 2009, Vol 41, Num 6, pp 463-480, issn 0306-8919, 18 p.Article

Photonic analogue-to-digital conversion using electroabsorption modulator and supercontinuum lightODA, S; MARUTA, A.Electronics Letters. 2006, Vol 42, Num 17, pp 1000-1002, issn 0013-5194, 3 p.Article

Ultra-small Si-nanowire-based 400 GHz-spacing 15 x 15 arrayed-waveguide grating router with microbendsFU, X; DAI, D.Electronics letters. 2011, Vol 47, Num 4, pp 266-268, issn 0013-5194, 3 p.Article

Loss reduction of arrayed waveguide grating with mode converters designed by wavefront matching methodSAKAMAKI, Y; SAIDA, T; TAMURA, M et al.Electronics Letters. 2006, Vol 42, Num 22, pp 1300-1301, issn 0013-5194, 2 p.Article

32 phase X 32 amplitude optical arbitrary waveform generationFONTAINE, N. K; SCOTT, R. P; CAO, J et al.Optics letters. 2007, Vol 32, Num 7, pp 865-867, issn 0146-9592, 3 p.Article

Analysis and Development of Fixed and Variable Waveband MUX/DEMUX Utilizing AWG Routing FunctionsKAKEHASHI, Shoji; HASEGAWA, Hiroshi; SATO, Ken-Ichi et al.Journal of lightwave technology. 2009, Vol 27, Num 1-4, pp 30-40, issn 0733-8724, 11 p.Article

Demonstration of a ROADM Using Cyclic AWGsTSAI, Cheng-Mu; TAGA, Hidenori; YANG, Cheng-Hao et al.Journal of lightwave technology. 2011, Vol 29, Num 17-20, pp 2780-2784, issn 0733-8724, 5 p.Article

Arrayed waveguide grating based on group-index modificationMATOS, Oscar M; CALVO, Marfa L; CHEBEN, Pavel et al.Journal of lightwave technology. 2006, Vol 24, Num 3, pp 1551-1557, issn 0733-8724, 7 p.Article

Analysis of adaptive dispersion compensators with double-AWG structuresKERBSTADT, Fabian; PETERMANN, Klaus.Journal of lightwave technology. 2005, Vol 23, Num 3, pp 1468-1477, issn 0733-8724, 10 p.Article

A Silicon-Based Arrayed Waveguide Grating Operating in Two Communication ChannelsSATTARI, Hamed; ABBASI, Amin.Fiber and integrated optics (Print). 2011, Vol 30, Num 1-6, pp 389-394, issn 0146-8030, 6 p.Article

Improve channel uniformity of an si-nanowire AWG demultiplexer by using dual-tapered auxiliary waveguidesZHEN SHENG; DAOXIN DAI; SAILING HE et al.Journal of lightwave technology. 2007, Vol 25, Num 10, pp 3001-3007, issn 0733-8724, 7 p.Article

Reduction of sidewall roughness, insertion loss and crosstalk of polymer arrayed waveguide grating using vapor-redissolution techniqueZHANG, Hai-Ming; MA, Chun-Sheng; QIN, Zhen-Kun et al.Thin solid films. 2007, Vol 515, Num 18, pp 7313-7317, issn 0040-6090, 5 p.Article

New Analytical Arrayed Waveguide Grating ModelKLEIJN, Emil; SMIT, Meint K; LEIJTENS, Xaveer J. M et al.Journal of lightwave technology. 2013, Vol 31, Num 17-20, pp 3309-3314, issn 0733-8724, 6 p.Article

Arrayed-waveguide grating with uniform loss properties over the entire range of wavelength channelsTAKIGUCHI, K; OKAMOTO, K; SUGITA, A et al.Optics letters. 2006, Vol 31, Num 4, pp 459-461, issn 0146-9592, 3 p.Article

Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguidesSASAKI, K; OHNO, F; MOTEGI, A et al.Electronics Letters. 2005, Vol 41, Num 14, pp 801-802, issn 0013-5194, 2 p.Article

Extremely low-loss 1.5%-Δ 32-channel athermal arrayed-waveguide grating multi/demultiplexerKAMEI, S; INOUE, Y; MIZUNO, T et al.Electronics Letters. 2005, Vol 41, Num 9, pp 544-546, issn 0013-5194, 3 p.Article

Highly-scalable load-balanced router with optical switch fabricSIMSARIAN, J. E; GRIPP, J; DUELK, M et al.Electronics Letters. 2004, Vol 40, Num 25, pp 1600-1602, issn 0013-5194, 3 p.Article

Measurement of slowly varying component in phase error distribution of a large-channel-spacing arrayed-waveguide gratingTAKADA, K; SATOH, S.Electronics Letters. 2004, Vol 40, Num 23, pp 1486-1487, issn 0013-5194, 2 p.Article

Une nouvelle génération de circuits optiques à base de matériaux hybrides = A new generation of optical circuits based on hybrid materialsCOUDRAY, Paul.Photoniques (Orsay). 2004, Num 13, pp 44-45, issn 1629-4475, 2 p.Article

  • Page / 10