Pascal and Francis Bibliographic Databases

Help

Search results

Your search

au.\*:("CHARALAMBOUS C")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 84

  • Page / 4
Export

Selection :

  • and

DESIGN OF 2-DIMENSIONAL CIRCULARY-SYMMETRIC DIGITAL FILTERSCHARALAMBOUS C.1982; IEE PROC., G; ISSN 0143-7089; GBR; DA. 1982; VOL. 129; NO 2; PP. 47-54; BIBL. 21 REF.Article

A METHOD TO OVERCOME THE ILL-CONDITIONING PROBLEM OF DIFFERENTIABLE PENALTY FUNCTIONSCHARALAMBOUS C.1980; OPER. RES.; USA; DA. 1980; VOL. 28; NO 3 PART. 2; PP. 650-667; BIBL. 20 REF.Article

MINIMAX OPTIMIZATION OF RECURSIVE DIGITAL FILTERS USING RECENT MINIMAX RESULTS.CHARALAMBOUS C.1975; I.E.E.E. TRANS. ACOUST. SPEECH SIGNAL PROCESSG; U.S.A.; DA. 1975; VOL. 23; NO 4; PP. 333-345; BIBL. 15 REF.Article

DISCRETE OPTIMIZATION. = OPTIMISATION DISCRETECHARALAMBOUS C.1974; INTERNATION. J. SYST. SCI.; G.B.; DA. 1974; VOL. 5; NO 9; PP. 889-894; BIBL. 5 REF.Article

A LOVER BOUND FOR THE CONTROLLING PARAMETERS OF THE EXACT PENALTY FUNCTIONSCHARALAMBOUS C.1978; MATH PROGRAMMG; NLD; DA. 1978; VOL. 15; NO 3; PP. 278-290; BIBL. 11 REF.Article

A NEGATIVE-POSITIVE BARRIER METHOD FOR NON-LINEAR PROGRAMMING.CHARALAMBOUS C.1976; INTERNATION. J. SYST. SCI.; G.B.; DA. 1976; VOL. 7; NO 5; PP. 557-575; BIBL. 9 REF.Article

PENALTY ESTIMATES AND THE LEAST PTH APPROACH TO NONLINEAR PROGRAMMING.CHARALAMBOUS C.1976; IN: MODELING AND SIMULATION. ANNU. PITTSBURGH CONF. 7. PROC.; PITTSBURGH; 1976; PITTSBURGH, PA.; INSTRUMENT SOC. OF AMERICA; DA. 1976; VOL. 1; PP. 606-611; BIBL. 22 REF.Conference Paper

ON CONDITIONS FOR OPTIMALITY ON THE NONLINEAR L1 PROBLEMCHARALAMBOUS C.1979; MATH. PROGRAMMG; NLD; DA. 1979; VOL. 17; NO 2; PP. 123-135; BIBL. 5 REF.Article

NONLINEAR LEAST PTH OPTIMIZATION AND NONLINEAR PROGRAMMING.CHARALAMBOUS C.1977; MATH. PROGRAMMG; NETHERL.; DA. 1977; VOL. 12; NO 2; PP. 195-225; BIBL. 1 P. 1/2Article

EXTENSION OF THE ELZINGA-HEARN ALGORITHM TO THE WEIGHTED CASE = EXTENSION DE L'ALGORITHME D'ELZINGA-HEARN AU CAS PONDERECHARALAMBOUS C.1982; OPER. RES.; ISSN 0030-364X; USA; DA. 1982; VOL. 30; NO 3; PP. 591-594; BIBL. 4 REF.Article

ACCELERATION OF THE LEAST PTH ALGORITHM FOR MINIMAX OPTIMIZATION WITH ENGINEERING APPLICATIONSCHARALAMBOUS C.1979; MATH. PROGRAMMG; NLD; DA. 1979; VOL. 17; NO 3; PP. 270-297; BIBL. 24 REF.Article

MINIMAX DESIGN OF RECURSIVE DIGITAL FILTERS.CHARALAMBOUS C.1974; COMPUTER AIDED DESIGN; G.B.; DA. 1974; VOL. 6; NO 2; PP. 73-81; BIBL. 15 REF.Article

IMPROVED DESIGN METHOD FOR KAISER DIFFERENTIATORS AND COMPARISON WITH EQUIRIPPLE METHODANTONIOU A; CHARALAMBOUS C.1981; IEE PROC., E; ISSN 0143-7062; GBR; DA. 1981; VOL. 128; NO 5; PP. 190-196; BIBL. 12 REF.Article

EQUALISATION OF RECURSIVE DIGITAL FILTERSCHARALAMBOUS C; ANTONIOU A.1980; IEE PROC., PART G; ISSN 0143-7089; GBR; DA. 1980; VOL. 127; NO 5; PP. 219-225; BIBL. 16 REF.Article

STATIC FIELD COMPUTATIONS BY THE METHOD OF OPTIMISED SIMULATED IMAGESCHOW YL; CHARALAMBOUS C.1979; PROC. INSTIT. ELECTR. ENGRS; GBR; DA. 1979; VOL. 126; NO 1; PP. 123-125; BIBL. 6 REF.Article

AN EFFICIENT METHOD TO SOLVE THE MINIMAX PROBLEM DIRECTLY.CHARALAMBOUS C; CONN AR.1978; S.I.A.M. J. NUMER. ANAL.; U.S.A.; DA. 1978; VOL. 15; NO 1; PP. 162-187; BIBL. 21 REF.Article

A new approach to multicriterion optimization problem and its application to the design of 1-D digital filtersCHARALAMBOUS, C.IEEE transactions on circuits and systems. 1989, Vol 36, Num 6, pp 773-784, issn 0098-4094, 12 p.Article

NONLINEAR PROGRAMMING USING MINIMAX TECHNIQUES.BANDLER JW; CHARALAMBOUS C.1974; J. OPTIMIZ. THEORY APPL.; U.S.A.; DA. 1974; VOL. 13; NO 6; PP. 607-619; BIBL. 1 P.Article

Accelaration of the HAP approach for the multifacility location problemCHARALAMBOUS, C.Naval research logistics quarterly. 1985, Vol 32, Num 3, pp 373-389, issn 0028-1441Article

SOLUTION OF OPTIMAL LOAD FLOW PROBLEM BY MODIFIED RECURSIVE QUADRATIC-PROGRAMMING METHODLIPOWSKI JS; CHARALAMBOUS C.1981; IEE PROC., C; ISSN 0143-7046; GBR; DA. 1981; VOL. 128; NO 5; PP. 288-294; BIBL. 24 REF.Article

NON-LINEAR MINIMAX OPTIMIZATION AS A SEQUENCE OF LEAST P TH OPTIMIZATION WITH FINITE VALUES OF P.CHARALAMBOUS C; BANDLER JW.1976; INTERNATION. J. SYST. SCI.; G.B.; DA. 1976; VOL. 7; NO 4; PP. 377-391; BIBL. 10 REF.Article

Conjugate gradient algorithm for efficient training of artificial neural networksCHARALAMBOUS, C.IEE proceedings. Part G. Circuits devices and systems. 1992, Vol 139, Num 3, pp 301-310, issn 0956-3768Article

Closed form approach to minimax design of 1-dimensional recursive digital filtersCHARALAMBOUS, C.IEE proceedings. Part G. Electronic circuits and systems. 1986, Vol 133, Num 3, pp 121-128, issn 0143-7089Article

PRATICAL LEAST PTH OPTIMIZATION OF NETWORKSBANDLER JW; CHARALAMBOUS C.1972; I.E.E.E. TRANS. MICROWAVE THEORY TECH.; U.S.A.; DA. 1972; VOL. 20; NO 12; PP. 834-840; BIBL. 17 REF.Serial Issue

SOLVING MULTIFACILITY LOCATION PROBLEMS INVOLVING EUCLIDEAN DISTANCESCALAMAI P; CHARALAMBOUS C.1980; NAV. RES. LOGIST. Q.; ISSN 0028-1441; USA; DA. 1980; VOL. 27; NO 4; PP. 609-620; BIBL. 13 REF.Article

  • Page / 4