Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("CODE LEE")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 30

  • Page / 2
Export

Selection :

  • and

CONCATENATED CODES FOR THE LEE METRICASTOLA JT.1982; IEEE TRANS. INF. THEORY; ISSN 0018-9448; USA; DA. 1982; VOL. 28; NO 5; PART 1; PP. 778-779; BIBL. 9 REF.Article

CODES WITH THE SAME LEE WEIGHT ENUMERATOR ARE ISOMETRICGOLDBERG DY; SOLOW AE.1982; J. COMB. THEORY, SER. A; ISSN 0097-3165; USA; DA. 1982; VOL. 32; NO 3; PP. 405-406; BIBL. 3 REF.Article

COMMENT ON "A NOTE ON PERFECT LEE-CODES"HOLDRIDGE DB; DAVIS JA.1981; DISCRETE APPL. MATH.; ISSN 0166-218X; NLD; DA. 1981; VOL. 3; NO 3; PP. 221; BIBL. 4 REF.Article

A NOTE ON PERFECT LEE-CODES OVER SMALL ALPHABETSASTOLA J.1982; DISCRETE APPL. MATH.; ISSN 0166-218X; NLD; DA. 1982; VOL. 4; NO 3; PP. 227-228; BIBL. 6 REF.Article

A MODIFICATION OF THE ELIAS-BOUND AND NON EXISTENCE THEOREMS FOR PERFECT CODES IN THE LEE-METRICLEPISTO T.1981; INFORM. CONTROL; ISSN 0019-9958; FRA; DA. 1981; VOL. 49; NO 2; PP. 109-124; BIBL. 9 REF.Article

THE LEE-SCHEME AND BOUNDS FOR LEE-CODESASTOLA J.1982; CYBERNETICS AND SYSTEMS; ISSN 0196-9722; USA; DA. 1982; VOL. 13; NO 4; PP. 331-343; BIBL. 6 REF.Article

AN APPROACH TO CONSTANT WEIGHT AND LEE CODES BY USING THE METHODS OF ASSOCIATION SCHEMESTARNANEN H.1982; TURUN YLIOPISTON JULKAISUJA. SARJA A1. ASTRONOMICA. CHEMICA. PHYSICA. MATHEMATICA. (ANNALES UNIVERSITATIS TURKUENSIS. SERIES A1, ASTRONOMICA-CHEMICA-PHYSICA-MATHEMATICA); ISSN 0082-7002; FIN; DA. 1982; NO 182; 76 P.; BIBL. 39 REF.Serial Issue

A NOTE ON PERFECT LEE-CODES OVER SMALL ALPHABETSLEPISTOE T.1981; DISCRETE APPL. MATH.; ISSN 0166-218X; NLD; DA. 1981; VOL. 3; NO 1; PP. 73-74; BIBL. 3 REF.Article

A NOTE ON PERFECT LEE-CODESRIIHONEN AI.1980; DISCRETE APPL. MATH.; NLD; DA. 1980; VOL. 2; NO 3; PP. 259-260; BIBL. 2 REF.Article

On the asymptotic behaviour of Lee-codesASTOLA, J.Discrete applied mathematics. 1984, Vol 8, Num 1, pp 13-23, issn 0166-218XArticle

AN ELIAS TYPE BOUND FOR LEE CODES OVER LARGE ALPHABETS AND ITS APPLICATION TO PERFECT CODESASTOLA JT.1982; IEEE TRANS. INF. THEORY; ISSN 0018-9448; USA; DA. 1982; VOL. 28; NO 1; PP. 111-113; BIBL. 7 REF.Article

Upper bounds for constant weight and Lee codes slightly outside the Plotkin rangeTARNANEN, H.Discrete applied mathematics. 1987, Vol 16, Num 3, pp 265-277, issn 0166-218XArticle

New upper bounds on Lee codesQUISTORFF, Jörn.Discrete applied mathematics. 2006, Vol 154, Num 10, pp 1510-1521, issn 0166-218X, 12 p.Article

Resource placement in torus-based networksBAE, M. M; BOSE, B.IEEE transactions on computers. 1997, Vol 46, Num 10, pp 1083-1092, issn 0018-9340Article

Communication complexity of Sum-type functions invariant under translationTAMM, U.Information and computation (Print). 1995, Vol 116, Num 2, pp 162-173, issn 0890-5401Article

On domination numbers of Cartesian product of pathsGRAVIER, S; MOLLARD, M.Discrete applied mathematics. 1997, Vol 80, Num 2-3, pp 247-250, issn 0166-218XArticle

On the minimum weights of Type IV codes over Z4 with certain lengthsBOUYUKLIEVA, Stefka.Journées internationales codage et cryptographie. 2001, pp 121-127, isbn 2-7261-1179-3Conference Paper

Product Constructions for Perfect Lee CodesETZION, Tuvi.IEEE transactions on information theory. 2011, Vol 57, Num 11, pp 7473-7481, issn 0018-9448, 9 p.Article

Cyclic codes over Z4 of oddly even lengthBLACKFORD, Thomas.Discrete applied mathematics. 2003, Vol 128, Num 1, pp 27-46, issn 0166-218X, 20 p.Conference Paper

Data rearrangement between radix-k and Lee distance Gray codes in k-ary n-cubesBAE, Myung M; VENKATESAN, R; BOSE, Bella et al.Journal of parallel and distributed computing (Print). 2002, Vol 62, Num 1, pp 19-37, issn 0743-7315Article

Quasi-Perfect Codes From Cayley Graphs Over Integer RingsQUEIROZ, Cátia Quilles; CAMARERO, Cristóbal; MARTINEZ, Carmen et al.IEEE transactions on information theory. 2013, Vol 59, Num 9, pp 5905-5916, issn 0018-9448, 12 p.Article

Decoding a class of alternant codes for the Lee metricBYRNE, Eimear.Journées internationales codage et cryptographie. 2001, pp 129-137, isbn 2-7261-1179-3Conference Paper

Lee distance and topological properties of K-ary n-cubesBOSE, B; BROEG, B; KWON, Y et al.IEEE transactions on computers. 1995, Vol 44, Num 8, pp 1021-1030, issn 0018-9340Article

256 QAM modem for multicarrier 400 Mbit/s digital radioNAKAMURA, Y; SAITO, Y; AIKAWA, S et al.IEEE journal on selected areas in communications. 1987, Vol 5, Num 3, pp 329-335, issn 0733-8716Article

Diameter Perfect Lee CodesHORAK, Peter; ALBDAIWI, Bader F.IEEE transactions on information theory. 2012, Vol 58, Num 8, pp 5490-5499, issn 0018-9448, 10 p.Article

  • Page / 2