Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("CRITERE POPOV")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Language

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 85

  • Page / 4

Export

Selection :

  • and

A GRAPHIC ANALYSIS TECHNIQUE FOR A SATURATING NONLINEARITYROTHSTEIN MB.1973; INSTRUMENT. TECHNOL.; U.S.A.; DA. 1973; VOL. 20; NO 5; PP. 49-51; BIBL. 4 REF.Serial Issue

SIMPLE PROGRAM EASES POPOV STABILITY QUEST.RUSHING AJ.1974; CONTROL ENGNG; U.S.A.; DA. 1974; VOL. 21; NO 7; PP. 57-59; BIBL. 7 REF.Article

EXISTENCE DE SYSTEMES ABSOLUMENT STABLES POUR LESQUELS LE CRITERE DE V.M. POPOV N'EST PAS VERIFIEPYATNITSKIJ ES.1973; AVTOMAT. I TELEMEKH.; S.S.S.R.; DA. 1973; NO 1; PP. 30-37; ABS. ANGL.; BIBL. 12 REF.Serial Issue

CONSTRUCTION OF STABILITY MULTIPLIERS FOR NON-LINEAR FEEDBACK SYSTEMS. = CONSTRUCTION DE MULTIPLICATEURS STABILISANTS POUR DES ASSERVISSEMENTS NON-LINEAIRESSUNDARESHAN MK; THATHACHAR MAL.1974; INTERNATION. J. SYST. SCI.; G.B.; DA. 1974; VOL. 5; NO 3; PP. 277-285; BIBL. 11 REF.Article

FREQUENCY-DOMAIN CRITERIA FOR STABILITY OF A CLASS OF NONLINEAR SYSTEMS WITH RANDOM PARAMETERS. = CRITERE DE STABILITE DANS LE DOMAINE FREQUENTIEL POUR UNE CLASSE DE SYSTEMES NON-LINEAIRES A PARAMETRES ALEATOIRESSOCHA L.1975; I.E.E.E. TRANS. AUTOMAT. CONTROL.; U.S.A.; DA. 1975; VOL. 20; NO 2; PP. 284-287; BIBL. 3 REF.Article

APPLICATION OF THE POPOV CRITERION TO PH-NEUTRALIZATION CONTROL.RANG ER.1975; IN: ADV. INSTRUM. IND. ORIENTED CONF. EXHIB. 30. PROC.; MILWAUKEE, WIS.; 1975; PITTSBURGH, PA.; INSTRUM. SOC. AM.; DA. 1975; PP. 764.1-764.4Conference Paper

NEW CRITERIA FOR BOUNDED-INPUT-BOUNDED-OUTPUT AND ASYMPIOTIC STABILITY OF NONLINEAR SYSTEMSHADDAD EK.1971; IN: PROC. INT. FED. AUTOM. CONTROL 5TH WORLD CONGR.; PARIS; 1972; DUESSELDORF; IFAC; DA. 1971; VOL. 4; PP. 1-8; BIBL. 4 REF.Conference Proceedings

EXTENSION OF APPLICABILITY OF POPOV'S STEADY-STATE ABSOLUTE-STABILITY FREQUENCY CRITERION OF NONLINEAR SYSTEMS. = EXTENSION DE LA POSSIBILITE D'APPLICATION DU CRITERE FREQUENTIEL DE STABILITE ABSOLUE DE POPOV EN REGIME PERMANENT POUR LES SYSTEMES NON LINEAIRESCARTIANU G; PILAT F.1975; ELECTRON. LETTERS; G.B.; DA. 1975; VOL. 11; NO 5; PP. 111-113; BIBL. 5 REF.Article

FREQUENCY STABILITY CRITERIA FOR NON-LINEAR STOCHASTIC SYSTEMS. = CRITERE DE STABILITE EN FREQUENCE POUR LES SYSTEMES STOCHASTIQUES NON-LINEAIRESHARRIS CJ.1975; INTERNATION. J. SYST. SCI.; G.B.; DA. 1975; VOL. 6; NO 6; PP. 579-589; BIBL. 10 REF.Article

OSCILLATION CRITERIA OF THE POPOV TYPE. = CRITERES D'OSCILLATION DU TYPE DE POPOVNOLDUS EJ.1975; I.E.E.E. TRANS. AUTOMAT. CONTROL; U.S.A.; DA. 1975; VOL. 20; NO 4; PP. 577-579; BIBL. 3 REF.Article

APPROCHE UNIFIEE DE LA DETERMINATION DE CRITERES FREQUENTIELS DE STABILITE DE SYSTEMES NON LINEAIRES ET/OU NON STATIONNAIRES. I. PARTIE THEORIQUELALANNE B; RAULT A.1973; REV. FR. AUTOMAT. INFORMAT. RECH. OPERAT., J.; FR.; DA. 1973; VOL. 7; NO 1; PP. 70-96; BIBL. 4 REF.Serial Issue

THE INVERSE LURE PROBLEM OF OPTIMAL CONTROL. = LE PROBLEME DE LURE INVERSE DE LA COMMANDE OPTIMALESOBRAL M JR.1975; J. FRANKLIN INST.; U.S.A.; DA. 1975; VOL. 300; NO 3; PP. 209-212; BIBL. 4 REF.Article

FREQUENCY CRITERIA FOR THE ABSENCE OF LIMIT CYCLES IN NONLINEAR SYSTEMSROOTENBERG J; WALK R.1973; I.E.E.E. TRANS. AUTOMAT. CONTROL.; U.S.A.; DA. 1973; VOL. 18; NO 1; PP. 64-65Serial Issue

STABILITY CONSIDERATIONS FOR A VOLTERRA INTEGRAL EQUATION WITH DISCONTINUOUS NONLINEARITY.MAEDA H.1973; S.I.A.M. J. CONTROL; U.S.A.; DA. 1973; VOL. 11; NO 2; PP. 202-214; BIBL. 13 REF.Article

ON THE STABILITY OF MULTILOOP FEEDBACK SYSTEMSESTRADA RF.1972; I.E.E.E. TRANS. AUTOMAT. CONTROL.; U.S.A.; DA. 1972; VOL. 17; NO 6; PP. 781-791; BIBL. 18 REF.Serial Issue

STABILITY BOUNDS FOR NONLINEAR SYSTEMS DESIGNED VIA FREQUENCY DOMAIN STABILITY CRITERIAGARG DP; RABINS MJ.1972; J. DYNAM. SYST. MEASUR. CONTROL; U.S.A.; DA. 1972; VOL. 94; NO 3; PP. 262-265; BIBL. 12 REF.Serial Issue

SYSTEMES ABSOLUMENT STABLES DANS UN ANGLE D'HURWITZ AVEC UNE NON-LINEARITE DECROISSANTE DIFFERENTIABLEVORONOV AA.1977; DOKL. AKAD. NAUK S.S.S.R.; S.S.S.R.; DA. 1977; VOL. 234; NO 1; PP. 38-41; BIBL. 3 REF.Article

UTILISATION DE LA METHODE DES LIEUX DES RACINES POUR L'ETUDE DE LA STABILITE ABSOLUE DES SYSTEMES NON LINEAIRES D'APRES LE CRITERE DE V.M. POPOVBENDRIKOV GA; SIDOROVA GA.1976; VEST. MOSKOV. UNIV., 3; S.S.S.R.; DA. 1976; VOL. 17; NO 2; PP. 177-186; BIBL. 12 REF.Article

GLOBAL STABILITY OF TWO LINEARLY INTERCONNECTED NONLINEAR SYSTEMS.MCCLAMROCH NH; IANCULESCU GD.1975; I.E.E.E. TRANS. AUTOMAT. CONTROL; U.S.A.; DA. 1975; VOL. 20; NO 5; PP. 678-682; BIBL. 14 REF.Article

SUR UNE EXTENSION DU CRITERE FREQUENTIEL DE POPOV POUR LES NON-LINEARITES NON STATIONNAIRESLEONOV GA.1980; AVTOM. TELEMEH.; ISSN 0005-2310; SUN; DA. 1980; NO 11; PP. 21-26; ABS. ENG; BIBL. 8 REF.Article

FREQUENCY DOMAIN STABILITY CRITERIA FOR NONLINEAR SYSTEMS. = CRITERE DE STABILITE POUR DES SYSTEMES NON LINEAIRES DANS LE DOMAINE FREQUENTIELVERBRUGGEN HB.1974; REV. A; BELG.; DA. 1974; VOL. 15; NO 2; PP. 67-78; BIBL. 27 REF.Article

HYPERSTABILITY CONDITIONS FOR A CLASS OF STOCHASTIC DISTRIBUTED SYSTEMS WITH CONSTANT COEFFICIENTS.JUMARIE G.1974; RIC. DI AUTOMAT.; ITAL.; DA. 1974; VOL. 5; NO 2-3; PP. 158-174; BIBL. 4 REF.Article

MULTIPARAMETER SENSITIVITY ANALYSIS OF POWER-SYSTEM STABILITY BY POPOV'S METHODVENKATA SS; ECCLES WJ; NOLAND JH et al.1973; INTERNATION. J. CONTROL; G.B.; DA. 1973; VOL. 17; NO 2; PP. 291-304; BIBL. 8 REF.Serial Issue

EINIGE BEMERKUNGEN ZUR ABSOLUTEN STABILITAET DYNAMISCHER SYSTEME IN DEN SINGULAEREN FAELLEN. = QUELQUES REMARQUES SUR LA STABILITE ABSOLUE DE SYSTEMES DYNAMIQUES DANS LES CAS SINGULIERSHORMANN K.1976; WISSENSCH. Z. WILHELM-PIECK-UNIV. ROSTOCK, MATH.-NATURWISSENSCH. REIHE; DTSCH.; DA. 1976; VOL. 25; NO 8; PP. 877-882; ABS. RUSSE ANGL. FR.; BIBL. 13 REF.Article

GENERALIZED LYAPUNOV FUNCTION FOR POWER SYSTEMS. = FONCTION DE LYAPUNOV GENERALISEE POUR DES GENERATEURS ELECTRIQUESMANSOUR M.1974; I.E.E.E. TRANS. AUTOMAT. CONTROL; U.S.A.; DA. 1974; VOL. 19; NO 3; PP. 247-248; BIBL. 3 REF.Article

  • Page / 4