Pascal and Francis Bibliographic Databases


Search results

Your search

kw.\*:("Diagramme Voronoï")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV


A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV


A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 1158

  • Page / 47

Selection :

  • and

Convex hull and voronoi diagram of additively weighted pointsBOISSONNAT, Jean-Daniel; DELAGE, Christophe.Lecture notes in computer science. 2005, pp 367-378, issn 0302-9743, isbn 3-540-29118-0, 1Vol, 12 p.Conference Paper

Approximation of generalized Voronoi diagrams by ordinary Voronoi diagramsSUGIHARA, K.CVGIP. Graphical models and image processing. 1993, Vol 55, Num 6, pp 522-531, issn 1049-9652Article

Sur les diagrammes de Delaunay et de Voronoï d'ordre k dans le plan et dans l'espace = On planar and spatial order-k Delaunay and Voronoi diagramsSchmitt, Dominique; Spehner, J.-C.1995, 278 p.Thesis

Assessing geometric algorithms : some comments arising from the paper fast topological construction of Delaunay triangulations and Voronoi diagrams by Victor J.D. TsaiTIPPER, J.C.Computers & geosciences. 1995, Vol 21, Num 3, pp 433-436, issn 0098-3004Article

An optimal algorithm for constructing the weighted Voronoi diagram in the planeAURENHAMMER, F; EDELSBRUNNER, H.Pattern recognition. 1984, Vol 17, Num 2, pp 251-257, issn 0031-3203Article

Improved k-Nearest Neighbor Classifier for Biomedical Data Based on Convex Hull of Inversed Set of PointsSZYMANSKI, Zbigniew; DWULIT, Marek.Proceedings of SPIE, the International Society for Optical Engineering. 2010, Vol 7745, issn 0277-786X, isbn 9780819472358, 774510.1-774510.8Conference Paper

A fast Voronoi-diagram algorithm with quaternary tree bucketingOHYA, T; IRI, M; MUROTA, K et al.Information processing letters. 1984, Vol 18, Num 4, pp 227-231, issn 0020-0190Article

The only correct method to evaluate roundnessKEWEI LAI.Computers & industrial engineering. 1995, Vol 28, Num 1, pp 203-204, issn 0360-8352Article

The incomplete Voronoi diagram and percolation analysisZANINETTI, L.Physics letters. A. 1994, Vol 189, Num 3, pp 167-170, issn 0375-9601Article

Gridding-based direct Fourier inversion of the three-dimensional ray transformPENCZEK, Pawel A; RENKA, Robert; SCHOMBERG, Hermann et al.Journal of the Optical Society of America. A, Optics, image science, and vision (Print). 2004, Vol 21, Num 4, pp 499-509, issn 1084-7529, 11 p.Article

Quick and robust initialization of level set methodsJIA, Diye; HUANG, Fenggang; WEN, Xiaofang et al.International Conference on Signal Processing. 2004, pp 2676-2679, isbn 0-7803-8406-7, 4 p.Conference Paper

Processing nertwork models of energy/environment systemsCHINNECK, J. W.Computers & industrial engineering. 1995, Vol 28, Num 1, pp 179-189, issn 0360-8352Article

Local calculation of Voronoi diagramsKÜHN, U.Information processing letters. 1998, Vol 68, Num 6, pp 307-312, issn 0020-0190Article

Multiresolution Remeshing Using Weighted Centroidal Voronoi DiagramLIN, Chao-Hung; YAN, Chung-Ren; HSU, Ji-Hsen et al.Lecture notes in computer science. 2006, pp 295-301, issn 0302-9743, isbn 3-540-34379-2, 7 p.Conference Paper

Computing largest empty circles with location constraintsTOUSSAINT, G. T.International journal of computer & information sciences. 1983, Vol 12, Num 5, pp 347-358, issn 0091-7036Article

A novel computation algorithm of Voronoi diagrams for multiply-connected planar areasQIAN, Bo.Proceedings of SPIE, the International Society for Optical Engineering. 2009, Vol 7498, issn 0277-786X, isbn 978-0-8194-7809-2 0-8194-7809-1, 74983M.1-74983M.8, 2Conference Paper

Concrete and abstract Voronoi diagramsKLEIN, Rolf.Lecture notes in computer science. 1989, Vol 400, issn 0302-9743, 167 p.Article

Dualisation of Voronoi domains and Klotz construction: a general method for the generation of proper space fillingsKRAMER, P; SCHLOTTMANN, M.Journal of physics. A, mathematical and general. 1989, Vol 22, Num 23, pp L1097-L1102, issn 0305-4470Article

Dynamic Voronoi diagramsGOWDA, I. G; KIRKPATRICK, D. G; DER TSAI LEE et al.IEEE transactions on information theory. 1983, Vol 29, Num 5, pp 724-731, issn 0018-9448Article

Java applets for the dynamic visualization of Voronoi diagramsICKING, Christian; KLEIN, Rolf; KÖLLNER, Peter et al.Computer science in perspective (essays dedicated to Thomas Ottmann). Lecture notes in computer science. 2003, pp 191-205, issn 0302-9743, isbn 3-540-00579-X, 15 p.Book Chapter

Structural texture segmentation using irregular pyramidLAM, S. W. C; IP, H. H. S.Pattern recognition letters. 1994, Vol 15, Num 7, pp 691-698, issn 0167-8655Article

Géométrie algorithmique = Computational geometryBERSTEL, J; POCCHIOLA, M.Le Courrier du C.N.R.S. 1993, Num 80, pp 58-59, issn 0153-985XArticle

Trading areas of facilities with different sizesEISELT, H. A; LAPORTE, G.RAIRO. Recherche opérationnelle. 1988, Vol 22, Num 1, pp 33-44, issn 0399-0559Article

Voronoi diagrams for polygon-offset distance functionsBAREQUET, G; DICKERSON, M. T; GOODRICH, M. T et al.Lecture notes in computer science. 1997, pp 200-209, issn 0302-9743, isbn 3-540-63307-3Conference Paper

Reconstruction de structures géologiques à partir de données incomplètes = Reconstruction of geological structures from incomplete dataBOISSONAT, J.-D; NULLANS, S.Documents du BRGM. Techniques et méthodes. 1997, Num 274, pp 92-95Conference Paper

  • Page / 47