Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("ENSEMBLE MICROCANONIQUE")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Language

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 315

  • Page / 13

Export

Selection :

  • and

DYNAMICAL AVERAGES IN THE DUAL-RESONANCE MODELGORENSTEIN MI; MIRANSKY VA; SHELEST VP et al.1973; LETTERE NUOVO CIMENTO; ITAL.; DA. 1973; VOL. 6; NO 9; PP. 325-328; BIBL. 10 REF.Serial Issue

THE STABILITY OF THE GRAND MICROCANONICAL ENSEMBLE FOR BOUNDED ISOTHERMAL SPHERESLECAR M; KATZ J.1981; ASTROPHYS. J.; ISSN 0004-637X; USA; DA. 1981; VOL. 243; NO 3; PART. 1; PP. 983-986; BIBL. 10 REF.Article

THE CONDITIONAL ENTROPY IN THE MICROCANONICAL ENSEMBLE.DIETZ D; GREENBERG W.1975; J. MATH. PHYS.; U.S.A.; DA. 1975; VOL. 16; NO 8; PP. 1667-1671; BIBL. 6 REF.Article

EQUILIBRIUM IN STELLAR SYSTEMS.MILLER RH.1974; ADV. CHEM. PHYS.; U.S.A.; DA. 1974; VOL. 26; PP. 107-144; BIBL. 1 P.Article

MICROCANONICAL QUANTUM FIELD THEORYSTROMINGER A.1983; ANNALS OF PHYSICS; ISSN 0003-4916; USA; DA. 1983; VOL. 146; NO 2; PP. 419-457; BIBL. 17 REF.Article

THE CONDITIONAL ENTROPY IN THE MICROCANONICAL ENSEMBLE: THE QUANTUM LATTICEDIETZ D; GREENBERG W.1979; PHYSICA A; NLD; DA. 1979; VOL. 96; NO 3; PP. 511-530; BIBL. 8 REF.Article

MICROCANONICAL MONTE CARLO SIMULATIONCREUTZ M.1983; PHYSICAL REVIEW LETTERS; ISSN 0031-9007; USA; DA. 1983; VOL. 50; NO 19; PP. 1411-1414; BIBL. 8 REF.Article

SOLUBLE BOLTZMANN EQUATIONS FOR INTERNAL STATE AND MAXWELL MODELSFUTCHER E; HOARE MR; HENDRIKS EM et al.1980; PHYSICA A; ISSN 0378-4371; NLD; DA. 1980; VOL. 101; NO 1; PP. 185-204; BIBL. 28 REF.Article

ON THE ISOENTHALPIC-ISOBARIC ENSEMBLE IN CLASSICAL STATISTICAL MECHANICSHAILE JM; GRABEN HW.1980; MOL. PHYS.; ISSN 0026-8976; GBR; DA. 1980; VOL. 40; NO 6; PP. 1433-1439; BIBL. 10 REF.Article

ON THE LIMITS OF APPLICABILITY OF THE MICROCANONICAL ENSEMBLE FOR SYSTEMS OF COUPLED OSCILLATORS.CAROTTA MC; FERRARIO C; LO VECCHIO G et al.1976; PHYS. LETTERS, A; NETHERL.; DA. 1976; VOL. 57; NO 5; PP. 399-400; BIBL. 3 REF.Article

DIRECT CALCULATION OF FLUCTUATION FORMULAE IN THE MICROCANONICAL ENSEMBLERAY JR; GRABEN HW.1981; MOL. PHYS.; ISSN 0026-8976; GBR; DA. 1981; VOL. 43; NO 6; PP. 1293-1297; BIBL. 10 REF.Article

A CANONICAL ENSEMBLE DESCRIPTION OF THREE-BODY DISRUPTIONMONAGHAN JJ.1980; PROC.-ASTRON. SOC. AUST.; ISSN 0066-9997; AUS; DA. 1980; VOL. 4; NO 1; PP. 48-49; BIBL. 6 REF.Article

Thermodynamic nonextensivity in a closed string gasCOBAS, Manuel A; OSORIO, M. A. R; SUAREZ, Maria et al.Physics letters. Section B. 2004, Vol 601, Num 1-2, pp 99-107, issn 0370-2693, 9 p.Article

Finite-size scaling in a microcanonical ensembleDESAI, R. C; HEERMANN, D. W; BINDER, K et al.Journal of statistical physics. 1988, Vol 53, Num 3-4, pp 795-823, issn 0022-4715Article

Lattice gauge theory in the microcanonical ensembleCALLAWAY, D. J. E; ANEESUR RAHMAN.Physical review. D. Particles and fields. 1983, Vol 28, Num 6, pp 1506-1514, issn 0556-2821Article

Stochastic quantization versus the microcanonical ensemble: getting the best of both worldsDUANE, S.Nuclear physics. B. 1985, Vol 257, Num 5, pp 652-662, issn 0550-3213Article

Microcanonical simulation of Ising systemsHANOT, G; CREUTZ, M; NEUBERGER, H et al.Nuclear physics. B. 1984, Vol 235, Num 3, pp 417-434, issn 0550-3213Article

Stochastic quantization as a consequence of the microcanonical ensembleCALLAWAY, D. J. E.Physics letters. Section B. 1984, Vol 145, Num 5-6, pp 363-366, issn 0370-2693Article

Microcanonical formulation of quantum field theoriesIWAZAKI, A.Physics letters. Section B. 1984, Vol 141, Num 5-6, pp 342-348, issn 0370-2693Article

Simulation of a critical Ising fractalBHANOT, G; NEUBERGER, H; SHAPIRO, J. A et al.Physical review letters. 1984, Vol 53, Num 24, pp 2277-2280, issn 0031-9007Article

Microcanonical simulation of a toy model with vacuum seizingPOLONYL, J; STONE, M; OLSON, D et al.Nuclear physics. B. 1985, Vol 251, Num 2, pp 333-352, issn 0550-3213Article

AN EFFICIENT MICROCANONICAL SAMPLING METHODSEVERIN ES; FREASIER BC; HAMER ND et al.1978; CHEM. PHYS. LETTERS; NLD; DA. 1978; VOL. 57; NO 1; PP. 117-120; BIBL. 10 REF.Article

CONSTANT PRESSURE MOLECULAR DYNAMICS SIMULATIONS OF THE 2DR-12 SYSTEM: COMPARISON WITH ISOCHORES AND ISOTHERMSBROUGHTON JQ; GILMER GH; WEEKS JD et al.1981; J. CHEM. PHYS.; ISSN 0021-9606; USA; DA. 1981; VOL. 75; NO 10; PP. 5128-5132; BIBL. 21 REF.Article

Entanglement of a microcanonical ensembleVERHULST, Tobias; NAUDTS, Jan.Journal of physics. A, Mathematical and theoretical (Print). 2007, Vol 40, Num 10, pp 2475-2483, issn 1751-8113, 9 p.Article

Propositional bases for the physics of the Bernoulli oscillators (A theory of the hidden degree of freedom): III - Mechanical-Statistical frameworkMASTROCINQUE, G.Annales de la Fondation Louis de Broglie. 2003, Vol 28, Num 1, pp 9-47, issn 0182-4295, 39 p.Article

  • Page / 13