Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("ENVELOPPE CONVEXE")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Language

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Origin

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 1373

  • Page / 55

Export

Selection :

  • and

COMMENTS ON CONVEX HULL OF A FINITE SET OF POINTS IN TWO DIMENSIONSFOURNIER A.1979; INFORM. PROCESSG LETTERS; NLD; DA. 1979; VOL. 8; NO 4; PP. 173; BIBL. 2 REF.Article

A NOTE ON LEE AND SCHACHTER'S ALGORITHM FOR DELAUNAY TRIANGULATIONSHAPIRO M.1981; INT. J. COMPUTER INF. SCI.; ISSN 0091-7036; USA; DA. 1981; VOL. 10; NO 6; PP. 413-418; BIBL. 3 REF.Article

CONSTRUCTING THE CONVEX HULL OF A SET OF POINTS IN THE PLANEGREEN PJ; SILVERMAN BW.1979; COMPUTER J.; GBR; DA. 1979; VOL. 22; NO 3; PP. 262-266; BIBL. 6 REF.Article

THE CONVEX HULL OF A SPHERICALLY SYMMETRIC SAMPLEEDDY WF; GALE JD.1981; ADV. APPL. PROBAB.; ISSN 0001-8678; GBR; DA. 1981; VOL. 13; NO 4; PP. 751-763; BIBL. 30 REF.Article

TWO REMARKS ON A CONVEX HULL ALGORITHMAKL SG.1979; INFORM. PROCESSG LETTERS; NLD; DA. 1979; VOL. 8; NO 2; PP. 108-109; BIBL. 1 REF.Article

ANOTHER EFFICIENT ALGORITHM FOR CONVEX HULLS IN TWO DIMENSIONSANDREW AM.1979; INFORM. PROCESSG LETTERS; NLD; DA. 1979; VOL. 9; NO 5; PP. 216-219; BIBL. 12 REF.Article

AN OPTIMAL REAL-TIME ALGORITHM FOR PLANAR CONVEX HULLSPREPARATA FP.1979; COMMUNIC. A.C.M.; USA; DA. 1979; VOL. 22; NO 7; PP. 402-405; BIBL. 7 REF.Article

CONVEX HULL OF A FINITE SET OF POINTS IN TWO DIMENSIONSBYKAT A.1978; INFORM. PROCESSG LETTERS; NLD; DA. 1978; VOL. 7; NO 6; PP. 296-298; BIBL. 6 REF.Article

MOMENT INEQUALITIES FOR RANDOM VARIABLES IN COMPUTATIONAL GEOMETRYDEVROYE L.1983; COMPUTING (WIEN); ISSN 0010-485X; AUT; DA. 1983; VOL. 30; NO 2; PP. 111-119; ABS. GER; BIBL. 20 REF.Article

A SIMPLE ALGORITHM FOR BUILDING THE 3-D CONVEX HULLJOHANSEN GH; GRAM C.1983; BIT (NORDISK TIDSKRIFT FOR INFORMATIONSBEHANDLING); ISSN 0006-3835; SWE; DA. 1983; VOL. 23; NO 2; PP. 146-160; BIBL. 5 REF.Article

ON AN ALGORITHM FOR EXTERNAL TRIANGULATION OF ELV POLYGONSORLOWSKI M.1983; NRIMS TECHNICAL REPORT. TWISK; ISSN 501689; ZAF; DA. 1983; NO 287; 14 P.; BIBL. 3 REF.Serial Issue

A GENERALIZATION OF CARATHEODORY'S THEOREMBARANY I.1982; DISCRETE MATH.; ISSN 0012-365X; NLD; DA. 1982; VOL. 40; NO 2-3; PP. 141-152; BIBL. 11 REF.Article

LINEAR DECISION TREES ARE TWO WEAK FOR CONVEX HULL PROBLEMJAROMCZYK JW.1981; INF. PROCESS. LETT.; ISSN 0020-0190; NLD; DA. 1981; VOL. 12; NO 3; PP. 138-141; BIBL. 7 REF.Article

MAINTENANCE OF CONFIGURATIONS IN THE PLANEOVERMARS MH; VAN LEEUWEN J.1981; J. COMPUT. SYST. SCI.; ISSN 0022-0000; USA; DA. 1981; VOL. 23; NO 2; PP. 166-204; BIBL. 31 REF.Conference Paper

ANALYSIS OF "DOT PRODUCT SPACE" SHAPE DESCRIPTIONSSLOAN KR JR.1982; IEEE TRANS. PATTERN ANAL. MACH. INTELL.; ISSN 0162-8828; USA; DA. 1982; VOL. 4; NO 1; PP. 87-90; BIBL. 8 REF.Article

CONVEX RULLS AND EXTREME POINTS OF SOME CLASSES OF MULTIVALENT FUNCTIONSKAPOOR GP; MISHRA AK.1982; J. MATH. ANAL. APPL.; ISSN 0022-247X; USA; DA. 1982; VOL. 87; NO 1; PP. 116-126; BIBL. 14 REF.Article

A LOWER BOUND TO FINDING CONVEX HULLSCHI CHIH YAO A.1981; J. ASSOC. COMPUT. MACH.; ISSN 0004-5411; USA; DA. 1981; VOL. 28; NO 4; PP. 780-787; BIBL. 5 REF.Article

VORONOI DIAGRAMS FROM CONVEX HULLSBROWN KQ.1979; INFORM. PROCESSG LETTERS; NLD; DA. 1979; VOL. 9; NO 5; PP. 223-228; BIBL. 25 REF.Article

A CONSTANT-TIME PARELLEL ALGORITHM FOR COMPUTING CONVEX HULLSAKL SG.1982; BIT (NORD. TIDSKR. INF-BEHANDL.); ISSN 0006-3835; SWE; DA. 1982; VOL. 22; NO 2; PP. 130-134; BIBL. 14 REF.Article

EFFICIENT CONVEX HULL ALGORITHMS FOR PATTERN RECOGNITION APPLICATIONSAKL SG; TOUSSAINT GT.sdINTERNATIONAL JOINT CONFERENCE ON PATTERN RECOGNITION. 4/1978/KYOTO; JPN; DA. S.D.; PP. 483-487; BIBL. 39 REF.Conference Paper

TWO METHODS FOR FINDING CONVEX HULLS OF PLANAR FIGURESBATCHELOR BG.1980; CYBERN. SYST.; USA; DA. 1980; VOL. 11; NO 1-2; PP. 105-113; BIBL. 6 REF.Article

A NOTE ON FINDING CONVEX HULLS VIA MAXIMAL VECTORSDEVROYE L.1980; INF. PROCESS. LETT.; ISSN 0020-0190; NLD; DA. 1980; VOL. 11; NO 1; PP. 53-56; BIBL. 11 REF.Article

ON CONDITIONS FOR SUCCESS OF SKLANSKY'S CONVEX HULL ALGORITHMORLOWSKI M.1982; NRIMS TECH. REP., TWISK; ISSN 501689; ZAF; DA. 1982; NO 282; 24 REF.; BIBL. 5 REF.Serial Issue

ON THE COMPUTER GENERATION OF RANDOM CONVEX HULLSDEVROYE L.1982; COMPUT. MATH. WITH APPL.; ISSN 0097-4943; USA; DA. 1982; VOL. 8; NO 1; PP. 1-13; BIBL. 32 REF.Article

A CONVEX HULL ALGORITHM FOR PLANAR SIMPLE POLYGONSORLOWSKI M.1982; NRIMS TECH. REP., TWISK; ISSN 501689; ZAF; DA. 1982; NO 290; 18 P.; BIBL. 6 REF.Serial Issue

  • Page / 55