Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("EQUATION BERGER")

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 16 of 16

  • Page / 1
Export

Selection :

  • and

A STUDY OF BERGER EQUATIONS APPLIED TO NON-LINEAR VIBRATIONS OF ELASTICS PLATES. = ETUDE DES EQUATIONS DE BERGER APPLIQUEES AUX VIBRATIONS NON LINEAIRES DES PLAQUES ELASTIQUESVENDHAN CP.1975; INTERNATION. J. MECH. SCI.; G.B.; DA. 1975; VOL. 17; NO 7; PP. 461-468; BIBL. 12 REF.Article

NOTE ON THE LARGE DEFLECTIONS OF IRREGULAR SHAPED PLATES BY THE METHOD OF CONFORMAL MAPPING. = NOTE SUR LES GRANDES DEFORMATIONS TRANSVERSALES DES PLAQUES DE FORME IRREGULIERE PAR LA METHODE DE LA TRANSFORMATION CONFORMEBANERJEE MM.1976; J. APPL. MECH.; U.S.A.; DA. 1976; VOL. 43; NO 2; PP. 356-357; BIBL. 6 REF.Article

REMARKS ON THE APPROXIMATE ANALYSIS OF THE NONLINEAR BEHAVIOR OF SHALLOW SHELLS. = REMARQUES SUR L'ANALYSE APPROCHEE DU COMPORTEMENT NON LINEAIRE DES COQUES PEU PROFONDESJONES R.1974; J. STRUCT. MECH.; U.S.A.; DA. 1974; VOL. 3; NO 2; PP. 157-161; BIBL. 11 REF.Article

A SIMPLIFIED APPROACH TO THE LARGE AMPLITUDE VIBRATION OF PLATES AND MEMBRANES.MAZUMDAR J; JONES R.1977; J. SOUND VIBR.; G.B.; DA. 1977; VOL. 50; NO 3; PP. 389-397; BIBL. 21 REF.Article

AN INTEGRAL EQUATION APPROACH TO FINITE DEFLECTION OF ELASTIC PLATESKAMIYA N; SAWAKI Y.1982; INT. J. NON-LINEAR MECH.; ISSN 0020-7462; USA; DA. 1982; VOL. 17; NO 3; PP. 187-194; ABS. GER; BIBL. 20 REF.Article

FREQUENCY ANALYSIS OF PLATES VIBRATING AT LARGE AMPLITUDES.RAMACHANDRAN J.1977; J. SOUND VIBR.; G.B.; DA. 1977; VOL. 51; NO 1; PP. 1-5; BIBL. 16 REF.Article

APPROXIMATE METHODS FOR THE LINEAR AND NONLINEAR ANALYSIS OF PLATES AND SHALLOW SHELLS.JONES R.1977; J. STRUCT. MECH.; U.S.A.; DA. 1977; VOL. 5; NO 3; PP. 233-253; BIBL. 1 P. 1/2Article

SOME STATIC AND DYNAMIC PROBLEMS CONCERNING NON-LINEAR BEHAVIOR OF PLATES AND SHALLOW SHELLS WITH DISCONTINUOUS BOUNDARY CONDITIONS.NOWINSKI JL.1975; INTERNATION. J. NON-LINEAR MECH.; G.B.; DA. 1975; VOL. 10; NO 1; PP. 1-14; ABS. FR. ALLEM.; BIBL. 19 REF.Article

AN APPROXIMATE FINITE DEFLECTION ANALYSIS OF A HEATED ELASTIC PLATE BY THE BOUNDARY ELEMENT METHODKAMIYA N; SAWAKI Y; NAKAMURA Y et al.1982; APPL. MATH. MODEL.; ISSN 0307-904X; GBR; DA. 1982; VOL. 6; NO 1; PP. 23-27; BIBL. 7 REF.Article

NON-LINEAR VIBRATION OF RECTANGULAR PLATES.SATHYAMOORTHY M.1978; J. SOUND VIBR.; G.B.; DA. 1978; VOL. 58; NO 2; PP. 301-304; BIBL. 3 REF.Article

LARGE DEFLECTION OF A RECTANGULAR PLATE RESTING ON A PASTERNAK-TYPE ELASTIC FOUNDATION.GHOSH PK.1977; J. APPL. MECH.; U.S.A.; DA. 1977; VOL. 44; NO 3; PP. 509-511; BIBL. 5 REF.Article

INTEGRAL EQUATION FORMULATION FOR NONLINEAR BENDING OF PLATES. FORMULATION BY WEIGHTED RESIDUAL METHODKAMIYA N; SAWAKI Y.1982; ZEITSCHRIFT FUER ANGEWANDTE MATHEMATIK UND MECHANIK; ISSN 0044-2267; DDR; DA. 1982; VOL. 62; NO 12; PP. 651-655; ABS. GER/RUS; BIBL. 15 REF.Article

The BIE analysis of the Berger equationSLADEK, J; SLADEK, V.Ingenieur-Archiv. 1983, Vol 53, Num 6, pp 385-397, issn 0020-1154Article

From the Burgers equation to a system of equations with the Kovalevskaya-Painlevé propertyGORODTSOV, V. A.Doklady. Mathematics. 2003, Vol 67, Num 3, pp 445-448, issn 1064-5624, 4 p.Article

A simplified approach to analysis of large deflections for rectangular plates with a cross-stiffenerKIMURA, K; OKAMOTO, M; TSUNOSE, K et al.JSME international journal. Series A, Solid mechanics and material engineering. 1999, Vol 42, Num 4, pp 515-520, issn 1344-7912Article

An expansion of the solution of Dirichlet boundary value problem for Berger equationTUROVTSEV, G. V.Journal of computational and applied mathematics. 2006, Vol 193, Num 1, pp 1-9, issn 0377-0427, 9 p.Article

  • Page / 1