kw.\*:("Enveloppe convexe")
Results 1 to 25 of 923
Selection :
The complexity of incremental convex hull algorithms in RdKALLAY, M.Information processing letters. 1984, Vol 19, Num 4, issn 0020-0190, 197Article
L'Enveloppe convexe du mouvement brownien = The convex bull of Brownian motionEL BACHIR, Mohammed.1983, 75 pThesis
On the X-Y convex hull of a set of X-Y polygonsNICHOLL, T. M; LEE, D. T; LIAO, Y. Z et al.BIT (Nordisk Tidskrift for Informationsbehandling). 1983, Vol 23, Num 4, pp 456-471, issn 0006-3835Article
Testing membership in matroid polyhedraCUNNINGHAM, W. H.Journal of combinatorial theory. Series B. 1984, Vol 36, Num 2, pp 161-188, issn 0095-8956Article
Technical note: cubic nervesBEZ, H. E.Computer-aided design. 1985, Vol 17, Num 8, pp 367-368, issn 0010-4485Article
Intersecting Sperner families and their convex hullsERDÖS, P. L; FRANKL, P; KATONA, G. O. H et al.Combinatorica (Print). 1984, Vol 4, Num 1, pp 21-34, issn 0209-9683Article
A convex hull algorithm for planar simple polygonsORLOWSKI, M.Pattern recognition. 1985, Vol 18, Num 5, pp 361-366, issn 0031-3203Article
On triangulations of the convex hull of n pointsROTHSCHILD, B. L; STRAUS, E. G.Combinatorica (Print). 1985, Vol 5, Num 2, pp 167-179, issn 0209-9683Article
The Graham scan triangulates simple polygonsXIANSHU KONG; EVERETT, H; TOUSSAINT, G et al.Pattern recognition letters. 1990, Vol 11, Num 11, pp 713-716, issn 0167-8655, 4 p.Article
COMMENTS ON CONVEX HULL OF A FINITE SET OF POINTS IN TWO DIMENSIONSFOURNIER A.1979; INFORM. PROCESSG LETTERS; NLD; DA. 1979; VOL. 8; NO 4; PP. 173; BIBL. 2 REF.Article
Dynamic planar convex Hull with optimal query time and O(log n . log log n) update timeBRODAL, G. S; JACOB, R.Lecture notes in computer science. 2000, pp 57-70, issn 0302-9743, isbn 3-540-67690-2Conference Paper
ROADEF 2002CHARON, Irène; HUDRY, Olivier; LEMAIRE, Bernard et al.RAIRO. Recherche opérationnelle. 2003, Vol 37, Num 4, issn 0399-0559, 126 p.Conference Proceedings
Open problems in computational geometryURRUTIA, Jorge.Lecture notes in computer science. 2002, pp 4-11, issn 0302-9743, isbn 3-540-43400-3Conference Paper
On a simple, practical, optimal, output-sensitive randomized planar convex hull algorithmBHATTACHARYA, B. K; SEN, S.Journal of algorithms (Print). 1997, Vol 25, Num 1, pp 177-193, issn 0196-6774Article
Problème des bords et enveloppe polynomialement convexe = Boundaries problem and polynomially convex hullPETUREAU, N.Bulletin des sciences mathématiques (Paris. 1885). 1997, Vol 121, Num 2, pp 151-162, issn 0007-4497Article
Convex 3-polytopes with exactly two types of edgesJENDROL, S; TKAC, M.Discrete mathematics. 1990, Vol 84, Num 2, pp 143-160, issn 0012-365XArticle
Efficient parallel convex hull algorithmsMILLER, R; STOUT, Q. F.IEEE transactions on computers. 1988, Vol 37, Num 12, pp 1605-1618, issn 0018-9340Article
On the ultimate convex hull algorithm in practiceMCQUEEN, M. M; TOUSSAINT, G. T.Pattern recognition letters. 1985, Vol 3, Num 1, pp 29-34, issn 0167-8655Article
The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time intervalIKEHATA, Masaru.Inverse problems. 2010, Vol 26, Num 5, issn 0266-5611, 055010.1-055010.20Article
A linear time algorithm for computing the convex hull of an ordered crossing polygonGHOSH, S. K; SHYAMASUNDAR, R. K.Pattern recognition. 1984, Vol 17, Num 3, pp 351-358, issn 0031-3203Article
Optimal parallel algorithms for computing convex hulls and for sortingAKL, S. G.Computing (Wien. Print). 1984, Vol 33, Num 1, pp 1-11, issn 0010-485XArticle
Minimum Pseudo-Triangulation Using Convex Hull LayersTAHERKHANI, F; NOUROLLAH, A.Foundations of computer science. International conferenceWorldComp'2011. 2011, pp 42-46, isbn 1-60132-179-1, 5 p.Conference Paper
Aggregation via empirical risk minimizationLECUE, Guillaume; MENDELSON, Shahar.Probability theory and related fields. 2009, Vol 145, Num 3-4, pp 591-613, issn 0178-8051, 23 p.Article
Classification of SuperpotentialsDANCER, A; WANG, M.Communications in mathematical physics. 2008, Vol 284, Num 3, pp 583-647, issn 0010-3616, 65 p.Article
Orientation of signed graphsZASLAVSKY, T.European journal of combinatorics. 1991, Vol 12, Num 4, pp 361-375, issn 0195-6698Article