Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("Graphe k-colorable")

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 25

  • Page / 1
Export

Selection :

  • and

The number of k-colorings of a graph on a fixed surfaceTHOMASSEN, Carsten.Discrete mathematics. 2006, Vol 306, Num 23, pp 3145-3153, issn 0012-365X, 9 p.Conference Paper

Conditional colorings of graphsLAI, Hong-Jian; JIANLIANG LIN; MONTGOMERY, Bruce et al.Discrete mathematics. 2006, Vol 306, Num 16, pp 1997-2004, issn 0012-365X, 8 p.Article

Graph theoretic closure porperties of the family of boundary NLC graph languagesROZENBERG, G; WELZL, E.Acta informatica. 1986, Vol 23, Num 3, pp 289-309, issn 0001-5903Article

Coloring random and semi-random K-colorable graphsBLUM, A; SPENCER, J.Journal of algorithms (Print). 1995, Vol 19, Num 2, pp 204-234, issn 0196-6774Article

Neighbor-distinguishing k-tuple edge-colorings of graphsBARIL, Jean-Luc; TOGNI, Olivier.Discrete mathematics. 2009, Vol 309, Num 16, pp 5147-5157, issn 0012-365X, 11 p.Article

On the oriented chromatic number of Halin graphsMOHAMMAD HOSSEINI DOLAMA; SOPENA, Eric.Information processing letters. 2006, Vol 98, Num 6, pp 247-252, issn 0020-0190, 6 p.Article

Equitable and equitable list colorings of graphsJUNLEI ZHU; YUEHUA BU.Theoretical computer science. 2010, Vol 411, Num 43, pp 3873-3876, issn 0304-3975, 4 p.Article

THE LOCAL NATURE OF LIST COLORINGS FOR GRAPHS OF HIGH GIRTHCHIERICHETTI, Flavio; VATTANI, Andrea.SIAM journal on computing (Print). 2010, Vol 39, Num 6, pp 2232-2250, issn 0097-5397, 19 p.Article

An oriented coloring of planar graphs with girth at least fivePINLOU, Alexandre.Discrete mathematics. 2009, Vol 309, Num 8, pp 2108-2118, issn 0012-365X, 11 p.Article

A note on the online First-Fit algorithm for coloring k-inductive graphsSMORODINSKY, Shakhar.Information processing letters. 2008, Vol 109, Num 1, pp 44-45, issn 0020-0190, 2 p.Article

Complexity of clique coloring and related problemsMARX, Dániel.Theoretical computer science. 2011, Vol 412, Num 29, pp 3487-3500, issn 0304-3975, 14 p.Article

On the locating chromatic number of Kneser graphsBEHTOEI, Ali; OMOOMI, Behnaz.Discrete applied mathematics. 2011, Vol 159, Num 18, pp 2214-2221, issn 0166-218X, 8 p.Article

MULTIPLE COLORING OF CONE GRAPHSZHISHI PAN; XUDING ZHU.SIAM journal on discrete mathematics (Print). 2011, Vol 24, Num 4, pp 1515-1526, issn 0895-4801, 12 p.Article

On b-coloring of the Kneser graphsJAVADI, Ramin; OMOOMI, Behnaz.Discrete mathematics. 2009, Vol 309, Num 13, pp 4399-4408, issn 0012-365X, 10 p.Article

Precoloring extension on unit interval graphsMARX, Daniel.Discrete applied mathematics. 2006, Vol 154, Num 6, pp 995-1002, issn 0166-218X, 8 p.Article

Graphs with maximum degree 6 are acyclically 11-colorableHOCQUARD, Herve.Information processing letters. 2011, Vol 111, Num 15, pp 748-753, issn 0020-0190, 6 p.Article

Total coloring of planar graphs without 6-cyclesJIANFENG HOU; BIN LIU; GUIZHEN LIU et al.Discrete applied mathematics. 2011, Vol 159, Num 2-3, pp 157-163, issn 0166-218X, 7 p.Article

RECONSTRUCTION AND CLUSTERING IN RANDOM CONSTRAINT SATISFACTION PROBLEMSMONTANARI, Andrea; RESTREPO, Ricardo; TETALI, Prasad et al.SIAM journal on discrete mathematics (Print). 2011, Vol 25, Num 1-2, pp 771-808, issn 0895-4801, 38 p.Article

Results on the Grundy chromatic number of graphsZAKER, Manouchehr.Discrete mathematics. 2006, Vol 306, Num 23, pp 3166-3173, issn 0012-365X, 8 p.Conference Paper

Forcing structures and cliques in uniquely vertex colorable graphsDANESHGAR, Amir.SIAM journal on discrete mathematics (Print). 2001, Vol 14, Num 4, pp 433-445, issn 0895-4801Article

(k, j)-coloring of sparse graphsBORODIN, O. V; IVANOVA, A. O; MONTASSIER, M et al.Discrete applied mathematics. 2011, Vol 159, Num 17, pp 1947-1953, issn 0166-218X, 7 p.Article

Polychromatic 4-coloring of guillotine subdivisionsHOREV, Elad; KATZ, Matthew J; KRAKOVSKI, Roi et al.Information processing letters. 2009, Vol 109, Num 13, pp 690-694, issn 0020-0190, 5 p.Article

On computing the distinguishing and distinguishing chromatic numbers of interval graphs and other resultsCHENG, Christine T.Discrete mathematics. 2009, Vol 309, Num 16, pp 5169-5182, issn 0012-365X, 14 p.Article

About equivalent interval colorings of weighted graphsBOUCHARD, Mathieu; CANGALOVIC, Mirjana; HERTZ, Alain et al.Discrete applied mathematics. 2009, Vol 157, Num 17, pp 3615-3624, issn 0166-218X, 10 p.Conference Paper

The k-edge intersection graphs of paths in a treeGOLUMBIC, Martin Charles; LIPSHTEYN, Marina; STERN, Michal et al.Discrete applied mathematics. 2008, Vol 156, Num 4, pp 451-461, issn 0166-218X, 11 p.Conference Paper

  • Page / 1