Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("MICROCANONICAL ENSEMBLE")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Language

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 301

  • Page / 13

Export

Selection :

  • and

SOLUBLE BOLTZMANN EQUATIONS FOR INTERNAL STATE AND MAXWELL MODELSFUTCHER E; HOARE MR; HENDRIKS EM et al.1980; PHYSICA A; ISSN 0378-4371; NLD; DA. 1980; VOL. 101; NO 1; PP. 185-204; BIBL. 28 REF.Article

THE CONDITIONAL ENTROPY IN THE MICROCANONICAL ENSEMBLE: THE QUANTUM LATTICEDIETZ D; GREENBERG W.1979; PHYSICA A; NLD; DA. 1979; VOL. 96; NO 3; PP. 511-530; BIBL. 8 REF.Article

A CANONICAL ENSEMBLE DESCRIPTION OF THREE-BODY DISRUPTIONMONAGHAN JJ.1980; PROC.-ASTRON. SOC. AUST.; ISSN 0066-9997; AUS; DA. 1980; VOL. 4; NO 1; PP. 48-49; BIBL. 6 REF.Article

ON THE ISOENTHALPIC-ISOBARIC ENSEMBLE IN CLASSICAL STATISTICAL MECHANICSHAILE JM; GRABEN HW.1980; MOL. PHYS.; ISSN 0026-8976; GBR; DA. 1980; VOL. 40; NO 6; PP. 1433-1439; BIBL. 10 REF.Article

ON THE LIMITS OF APPLICABILITY OF THE MICROCANONICAL ENSEMBLE FOR SYSTEMS OF COUPLED OSCILLATORS.CAROTTA MC; FERRARIO C; LO VECCHIO G et al.1976; PHYS. LETTERS, A; NETHERL.; DA. 1976; VOL. 57; NO 5; PP. 399-400; BIBL. 3 REF.Article

Microcanonical simulation on the first order phase transition of the XY antiferromagnet on the stacked triangular latticeKANKI, Kazuki; LOISON, Damien; SCHOTTE, Klaus-Dieter et al.Journal of the Physical Society of Japan. 2006, Vol 75, Num 1, issn 0031-9015, 01500.1-015001.2Article

Thermodynamic nonextensivity in a closed string gasCOBAS, Manuel A; OSORIO, M. A. R; SUAREZ, Maria et al.Physics letters. Section B. 2004, Vol 601, Num 1-2, pp 99-107, issn 0370-2693, 9 p.Article

Stochastic quantization versus the microcanonical ensemble: getting the best of both worldsDUANE, S.Nuclear physics. B. 1985, Vol 257, Num 5, pp 652-662, issn 0550-3213Article

Microcanonical simulation of Ising systemsHANOT, G; CREUTZ, M; NEUBERGER, H et al.Nuclear physics. B. 1984, Vol 235, Num 3, pp 417-434, issn 0550-3213Article

Stochastic quantization as a consequence of the microcanonical ensembleCALLAWAY, D. J. E.Physics letters. Section B. 1984, Vol 145, Num 5-6, pp 363-366, issn 0370-2693Article

Finite-size scaling in a microcanonical ensembleDESAI, R. C; HEERMANN, D. W; BINDER, K et al.Journal of statistical physics. 1988, Vol 53, Num 3-4, pp 795-823, issn 0022-4715Article

Lattice gauge theory in the microcanonical ensembleCALLAWAY, D. J. E; ANEESUR RAHMAN.Physical review. D. Particles and fields. 1983, Vol 28, Num 6, pp 1506-1514, issn 0556-2821Article

Microcanonical formulation of quantum field theoriesIWAZAKI, A.Physics letters. Section B. 1984, Vol 141, Num 5-6, pp 342-348, issn 0370-2693Article

Simulation of a critical Ising fractalBHANOT, G; NEUBERGER, H; SHAPIRO, J. A et al.Physical review letters. 1984, Vol 53, Num 24, pp 2277-2280, issn 0031-9007Article

Microcanonical simulation of a toy model with vacuum seizingPOLONYL, J; STONE, M; OLSON, D et al.Nuclear physics. B. 1985, Vol 251, Num 2, pp 333-352, issn 0550-3213Article

AN EFFICIENT MICROCANONICAL SAMPLING METHODSEVERIN ES; FREASIER BC; HAMER ND et al.1978; CHEM. PHYS. LETTERS; NLD; DA. 1978; VOL. 57; NO 1; PP. 117-120; BIBL. 10 REF.Article

THE EQUIVALENCE OF ENSEMBLES AND THE GIBBS PHASE RULE FOR CLASSICAL LATTICE SYSTEMSMARTIN LOEF A.1979; J. STATIST. PHYS.; USA; DA. 1979; VOL. 20; NO 5; PP. 557-569; BIBL. 10 REF.Article

ON THE CALCULATION OF SPECIFIC HEATS, THERMAL PRESSURE COEFFICIENTS AND COMPRESSIBILITIES IN MOLECULAR DYNAMICS SIMULATIONS.CHEUNG PSY.1977; MOLEC. PHYS.; G.B.; DA. 1977; VOL. 33; NO 2; PP. 519-526; BIBL. 8 REF.Article

STUDY OF THERMODYNAMIC VARIABLES IN MOLECULAR DYNAMIC EXPERIMENTS USING THE METHOD OF THE MICROCANONIC SETBUGAEV V YU.1982; TEPLOFISIKA VYSOKIH TEMPERATUR; ISSN 0040-3644; SUN; DA. 1982; VOL. 20; NO 4; PP. 778-781; BIBL. 5 REF.Article

ENTROPIE TOPOLOGIQUE MICROCANONIQUEFERRERO P.1979; Z. WAHRSCHEIN.-THEOR. VERWANDTE GEB.; DEU; DA. 1979; VOL. 46; NO 3; PP. 289-298; ABS. ENG; BIBL. 18 REF.Article

Entanglement of a microcanonical ensembleVERHULST, Tobias; NAUDTS, Jan.Journal of physics. A, Mathematical and theoretical (Print). 2007, Vol 40, Num 10, pp 2475-2483, issn 1751-8113, 9 p.Article

Propositional bases for the physics of the Bernoulli oscillators (A theory of the hidden degree of freedom): III - Mechanical-Statistical frameworkMASTROCINQUE, G.Annales de la Fondation Louis de Broglie. 2003, Vol 28, Num 1, pp 9-47, issn 0182-4295, 39 p.Article

A formula to compute the microcanonical volume of reactive initial conditions in transition state theoryWAALKENS, H; BURBANKS, A; WIGGINS, S et al.Journal of physics. A, mathematical and general. 2005, Vol 38, Num 45, pp L759-L768, issn 0305-4470Article

Product of random matrices in a microcanonical ensembleDEUTSCH, J. M; PALADIN, G.Physical review letters. 1989, Vol 62, Num 7, pp 695-699, issn 0031-9007, 5 p.Article

Hypervolumes in microcanonical Monte CarloSILVA FERNANDES, F. M. S; PRATES RAMALHO, J. P.Computer physics communications. 1995, Vol 90, Num 1, pp 73-80, issn 0010-4655Article

  • Page / 13