Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("MODELE KAC")

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 12 of 12

  • Page / 1

Export

Selection :

  • and

THE KIRKWOOD-SALSBURG EQUATIONS FOR A BOUNDED STABLE KAC POTENTIAL. I. GENERAL THEORY AND ASYMPTOTIC SOLUTIONS.GREWE N; KLEIN W.1977; J. MATH. PHYS.; U.S.A.; DA. 1977; VOL. 18; NO 19; PP. 1729-1734; BIBL. 9 REF.Article

THE KIRKWOOD-SALSBURG EQUATIONS FOR A BOUNDED STABLE KAC POTENTIAL II. INSTABILITY AND PHASE TRANSISTIONS.GREWE N; KLEIN W.1977; J. MATH. PHYS.; U.S.A.; DA. 1977; VOL. 18; NO 9; PP. 1735-1740; BIBL. 20 REF.Article

Semi-inhomogeneous solutions of the Kac model of Boltzmann equationsCORNILLE, H.Journal of physics. A, mathematical and general. 1985, Vol 18, Num 8, pp 1209-1219, issn 0305-4470Article

Exact solution for the spatially imhomogeneous nonlinear Kac model of the Boltzmann equationCORNILLE, H.Journal of mathematical physics. 1985, Vol 26, Num 6, pp 1203-1214, issn 0022-2488Article

Large deviation principles for the Hopfield model and the Kac-Hopfield modelBOVIER, A; GAYRARD, V; PICCO, P et al.Probability theory and related fields. 1995, Vol 101, Num 4, pp 511-546, issn 0178-8051Article

Spectral gap for Kac's model of Boltzmann equationJANVRESSE, Elise.Annals of probability. 2001, Vol 29, Num 1, pp 288-304, issn 0091-1798Article

Topological solitons in a sine-Gordon system with Kac-Baker long-range interactionsWOAFO, P; KENNE, J. R; KOFANE, T. C et al.Journal of physics. Condensed matter (Print). 1993, Vol 5, Num 10, pp L123-L128, issn 0953-8984Article

Critical finite-range scaling in scalar-field theories and Ising modelsRIKVOLD, P. A; GORMAN, B. M; NOVOTNY, M. A et al.Physical review. A. 1993, Vol 47, Num 3E, pp 1474-1485, issn 1050-2947Article

Determination of the spectral gap for Kac's master equation and related stochastic evolutionCARLEN, E. A; CARVALHO, M. C; LOSS, M et al.Acta mathematica. 2003, Vol 191, Num 1, pp 1-54, issn 0001-5962, 54 p.Article

On the approach to statistical equilibrium in an infinite-particle lattice dynamic modelCOURBAGE, M.Journal of mathematical physics. 1989, Vol 30, Num 8, pp 1840-1850, issn 0022-2488, 11 p.Article

Mathematical modeling for supercomputers : Background and tendencies1BELOTSERKOVSKII, O. M.Computational mathematics and mathematical physics. 2000, Vol 40, Num 8, pp 1173-1187, issn 0965-5425Article

Transfer operators and dynamical zeta functions for a class of lattice spin modelsHILGERT, J; MAYER, D.Communications in mathematical physics. 2002, Vol 232, Num 1, pp 19-58, issn 0010-3616, 40 p.Article

  • Page / 1