Pascal and Francis Bibliographic Databases

Help

Search results

Your search

jo.\*:("Machine learning")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 533

  • Page / 22
Export

Selection :

  • and

Finding relational redescriptionsGALBRUN, Esther; KIMMIG, Angelika.Machine learning. 2014, Vol 96, Num 3, pp 225-248, issn 0885-6125, 24 p.Article

An improved multiclass LogitBoost using adaptive-one-vs-onePENG SUN; REID, Mark D; JIE ZHOU et al.Machine learning. 2014, Vol 97, Num 3, pp 295-326, issn 0885-6125, 32 p.Article

Detecting concept change in dynamic data streams A sequential approach based on reservoir samplingPEARS, Russel; SAKTHITHASAN, Sripirakas; YUN SING KOH et al.Machine learning. 2014, Vol 97, Num 3, pp 259-293, issn 0885-6125, 35 p.Article

The matrix ridge approximation: algorithms and applicationsZHIHUA ZHANG.Machine learning. 2014, Vol 97, Num 3, pp 227-258, issn 0885-6125, 32 p.Article

Machine Learning for Science and SocietyRUDIN, Cynthia; WAGSTAFF, Kiri L.Machine learning. 2014, Vol 95, Num 1, issn 0885-6125, 147 p.Serial Issue

Improving active Mealy machine learning for protocol conformance testingAARTS, Fides; KUPPENS, Harco; TRETMANS, Jan et al.Machine learning. 2014, Vol 96, Num 1-2, pp 189-224, issn 0885-6125, 36 p.Article

Plane-based object categorisation using relational learningFARID, Reza; SAMMUT, Claude.Machine learning. 2014, Vol 94, Num 1, pp 3-23, issn 0885-6125, 21 p.Article

Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learningMCGOVERN, Amy; GAGNE, David J; WILLIAMS, John K et al.Machine learning. 2014, Vol 95, Num 1, pp 27-50, issn 0885-6125, 24 p.Article

Detecting inappropriate access to electronic health records using collaborative filteringMENON, Aditya Krishna; XIAOQIAN JIANG; JIHOON KIM et al.Machine learning. 2014, Vol 95, Num 1, pp 87-101, issn 0885-6125, 15 p.Article

Modeling topic control to detect influence in conversations using nonparametric topic modelsNGUYEN, Viet-An; BOYD-GRABER, Jordan; RESNIK, Philip et al.Machine learning. 2014, Vol 95, Num 3, pp 381-421, issn 0885-6125, 41 p.Article

Special Issue of the ECML/PKDD 2014 Journal TrackCALDERS, Toon; ESPOSITO, Floriana; HÜLLERMEIER, Eyke et al.Machine learning. 2014, Vol 97, Num 1-2, issn 0885-6125, 227 p.Serial Issue

Collaborative filtering with information-rich and information-sparse entitiesKAI ZHU; RUI WU; LEI YING et al.Machine learning. 2014, Vol 97, Num 1-2, pp 177-203, issn 0885-6125, 27 p.Article

A semantic matching energy function for learning with multi-relational data Application to word-sense disambiguationBORDES, Antoine; GLOROT, Xavier; WESTON, Jason et al.Machine learning. 2014, Vol 94, Num 2, pp 233-259, issn 0885-6125, 27 p.Conference Paper

Efficiently learning the preferences of peopleBIRLUTIU, Adriana; GROOT, Perry; HESKES, Tom et al.Machine learning. 2013, Vol 90, Num 1, pp 1-28, issn 0885-6125, 28 p.Article

Exploiting label dependencies for improved sample complexityCHEKINA, Lena; GUTFREUND, Dan; KONTOROVICH, Aryeh et al.Machine learning. 2013, Vol 91, Num 1, pp 1-42, issn 0885-6125, 42 p.Article

Learning figures with the Hausdorff metric by fractals—towards computable binary classificationSUGIYAMA, Mahito; HIROWATARI, Eiju; TSUIKI, Hideki et al.Machine learning. 2013, Vol 90, Num 1, pp 91-126, issn 0885-6125, 36 p.Article

On evaluating stream learning algorithmsGAMA, João; SEBASTIAO, Raquel; PEREIRA RODRIGUES, Pedro et al.Machine learning. 2013, Vol 90, Num 3, pp 317-346, issn 0885-6125, 30 p.Article

Regularization of non-homogeneous dynamic Bayesian networks with global information-coupling based on hierarchical Bayesian modelsGRZEGORCZYK, Marco; HUSMEIER, Dirk.Machine learning. 2013, Vol 91, Num 1, pp 105-154, issn 0885-6125, 50 p.Article

Sparse non Gaussian component analysis by semidefinite programmingDIEDERICHS, Elmar; JUDITSKY, Anatoli; NEMIROVSKI, Arkadi et al.Machine learning. 2013, Vol 91, Num 2, pp 211-238, issn 0885-6125, 28 p.Article

Special Issue of Selected Papers of ACML 2012ZHOU, Zhi-Hua; LEE, Wee Sun; HOI, Steven C. H et al.Machine learning. 2013, Vol 92, Num 2-3, issn 0885-6125, 283 p.Serial Issue

Robust ordinal regression in preference learning and rankingCORRENTE, Salvatore; GRECO, Salvatore; KADZINSKI, Miłosz et al.Machine learning. 2013, Vol 93, Num 2-3, pp 381-422, issn 0885-6125, 42 p.Article

Block coordinate descent algorithms for large-scale sparse multiclass classificationBLONDEL, Mathieu; SEKI, Kazuhiro; UEHARA, Kuniaki et al.Machine learning. 2013, Vol 93, Num 1, pp 31-52, issn 0885-6125, 22 p.Conference Paper

Learning sparse gradients for variable selection and dimension reductionYE, Gui-Bo; XIAOHUI XIE.Machine learning. 2012, Vol 87, Num 3, pp 303-355, issn 0885-6125, 53 p.Article

Optimal control as a graphical model inference problemKAPPEN, Hilbert J; GOMEZ, Vicenç; OPPER, Manfred et al.Machine learning. 2012, Vol 87, Num 2, pp 159-182, issn 0885-6125, 24 p.Article

Inductive Logic Programming (ILP 2010)FRASCONI, Paolo; LISI, Francesca A.Machine learning. 2012, Vol 86, Num 1, issn 0885-6125, 167 p.Serial Issue

  • Page / 22