Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("Moyenn harmonique")

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Language

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 59

  • Page / 3

Export

Selection :

  • and

A note on pair-formation functionsSCHMITZ, S.-F. H; CASTILLO-CHAVEZ, C.Mathematical and computer modelling. 2000, Vol 31, Num 4-5, pp 83-91, issn 0895-7177Conference Paper

Some inequalities for elementary mean valuesMEYER, B.Mathematics of computation. 1984, Vol 42, Num 165, pp 193-194, issn 0025-5718Article

Numbers whose positive divisors have small integral harmonic meanCOHEN, G. L.Mathematics of computation. 1997, Vol 66, Num 218, pp 883-891, issn 0025-5718Article

A HARMONIC MEAN INEQUALITY FOR THE GAMMA FUNCTION.GAUTSCHI W.1974; S.I.A.M. J. MATH. ANAL.; U.S.A.; DA. 1974; VOL. 5,2; NO 2; PP. 278-281; BIBL. 2 REF.Article

On the convergence of meansPALES, Z.Journal of mathematical analysis and applications. 1991, Vol 156, Num 1, pp 52-60, issn 0022-247XArticle

Some properties of linear-fractional transformations and the harmonic mean of matrix functionsNUDEL'MAN, A. A.Operator theory. 1994, Vol 72, pp 171-184, issn 0255-0156Article

On Gautschi's harmonic mean inequality for the gamma functionALZER, Horst.Journal of computational and applied mathematics. 2003, Vol 157, Num 1, pp 243-249, issn 0377-0427, 7 p.Article

SOME MEAN VALUE INEQUALITIES FOR THE GAMMA FUNCTION. IN MEMORY OF GEORGE E. FORSYTHE.GAUTSCHI W.1974; S.I.A.M. J. MATH. ANAL.; U.S.A.; DA. 1974; VOL. 5; NO 2; PP. 282-292; BIBL. 1 REF.Article

A harmonic mean inequality for the gamma functionALZER, H.Journal of computational and applied mathematics. 1997, Vol 87, Num 2, pp 195-198, issn 0377-0427Article

On the wave length for seismic design of underground pipeline structuresMATSUBARA, K; HIRASAW, K; URANO, K et al.IS-TOKYO'95 : International Conference on Earthquake Geotechnical Engineering. 1995, pp 587-590, isbn 90-5410-578-X, 2VolConference Paper

THE HARMONIC MEAN METHOD FOR ONE-WAY AND TWO-WAY ANALYSES OF VARIANCE.RANKIN NO.1974; BIOMETRIKA; G.B.; DA. 1974; VOL. 61; NO 1; PP. 117-122; BIBL. 3 REF.Article

Operator means and range inclusionJUN ICHI FUJII.Linear algebra and its applications. 1992, Vol 170, pp 137-146, issn 0024-3795Article

A WEIGHTED HARMONIC MEANS ANALYSIS FOR THE PROPORTIONAL UNBALANCED DESIGNBONETT DG.1982; EDUC. PSYCHOL. MEAS.; ISSN 0013-1644; USA; DA. 1982; VOL. 42; NO 2; PP. 401-407; BIBL. 21 REF.Article

On some further extensions of the characterizations of mean values by H. Haruki and Th. M. RassiasKIM, Y.-H.Journal of mathematical analysis and applications. 1999, Vol 235, Num 2, pp 598-607, issn 0022-247XArticle

On some inequalities of Ky Fan and Wang-WangMCGREGOR, M. T.Journal of mathematical analysis and applications. 1993, Vol 180, Num 1, pp 182-188, issn 0022-247XArticle

Refinements and extensions of an inequalityKIM, Y.-H.Journal of mathematical analysis and applications. 2000, Vol 245, Num 2, pp 628-632, issn 0022-247XArticle

A note on the arithmetic-geometric-harmonic mean inequalitiesSTEFANSKI, L. A.The American statistician. 1996, Vol 50, Num 3, pp 246-247, issn 0003-1305Article

Improvement and extension of Chebyshev-type inequalities and of the Kolmogorov estimatesSOKOLOV, N. V.Doklady. Mathematics. 2002, Vol 65, Num 3, pp 369-372, issn 1064-5624Article

An arithmetic-geometric-harmonic mean inequality involving Hadamard productsMATHIAS, R.Linear algebra and its applications. 1993, Vol 184, pp 71-78, issn 0024-3795Article

Tell me the method, I'll give you the meanLANN, Avital; FALK, Ruma.The American statistician. 2006, Vol 60, Num 4, pp 322-327, issn 0003-1305, 6 p.Article

Bounds for A-G, A-H, G-H, and a family of inequalities of Ky Fan's type, using a general methodMERCER, A. M.Journal of mathematical analysis and applications. 2000, Vol 243, Num 1, pp 163-173, issn 0022-247XArticle

A plant-capture approach for population size estimation in continuous timeGOUDIE, I. B. J; POLLOCK, K. H; ASHBRIDGE, J et al.Communications in statistics. Theory and methods. 1998, Vol 27, Num 2, pp 433-451, issn 0361-0926Article

Means and averages of Taylor polynomialsHORWITZ, A.Journal of mathematical analysis and applications. 1993, Vol 176, Num 2, pp 404-412, issn 0022-247XArticle

Retinements on an inequality of Ky FanYANG, G.-S; WANG, C.-S.Journal of mathematical analysis and applications. 1996, Vol 201, Num 3, pp 955-965, issn 0022-247XArticle

A new fourth order Runge-Kutta formula based on the harmonic meanSANUGI, B. B; EVANS, D. J.International journal of computer mathematics. 1994, Vol 50, Num 1-2, pp 113-118, issn 0020-7160Article

  • Page / 3