Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("NOYAU VOLTERRA")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Language

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 32

  • Page / 2
Export

Selection :

  • and

CARACTERISATION DES NOYAUX DE VOLTERRA D'UN SYSTEME NON LINEAIRE.GAUTIER M; MONSION M; SAGASPE JP et al.1975; ELECTRON. LETTERS; G.B.; DA. 1975; VOL. 11; NO 15; PP. 351-353; ABS. ANGL.; BIBL. 4 REF.Article

DETERMINATION OF VOLTERRA KERNELS FROM INPUT-OUTPUT DATAMOSCA E.1972; INTERNATION. J. SYST. SCI.; G.B.; DA. 1972; VOL. 3; NO 4; PP. 357-374; BIBL. 1 P.Serial Issue

COMBINED CROSSCORRELATION METHOD FOR THE MEASUREMENT OF 2ND-ORDER VOLTERRA KERNELSBARKER HA; OBIDEGWU SN.1973; PROC. INSTIT. ELECTR. ENGRS; G.B.; DA. 1973; VOL. 120; NO 1; PP. 114-118; BIBL. 9 REF.Serial Issue

ESTIMATION OF KERNELS FOR SECOND ORDER VOLTERRA SERIES IN HYDROLOGYDISKIN MH; BONEH A.1972; IN: 3RD SYMP. NONLINEAR ESTIMATION THEORY APPL. PROC. SAN DIEGO, CALIF., 1972; NORTH HOLLYWOOD, CALIF.; WESTERN PERIODICALS CO.; DA. 1972; PP. 58-61; BIBL. 5 REF.Conference Proceedings

ON IDENTIFICATION OF SEPARABLE KERNEL SYSTEMSMANN R.1979; BIOL. CYBERN.; DEU; DA. 1979; VOL. 35; NO 4; PP. 197-204; BIBL. 12 REF.Article

A SEPARATION PROPERTY OF REALIZABLE VOLTERRA KERNELSISIDORI A; RUBERTI A.1982; SYST. CONTROL LETT.; ISSN 0167-6911; NLD; DA. 1982; VOL. 1; NO 5; PP. 309-311; BIBL. 7 REF.Article

Measuring Volterra kernelsBOYD, S; TANG, Y. S; CHUA, L. O et al.IEEE transactions on circuits and systems. 1983, Vol 30, Num 8, pp 571-577, issn 0098-4094Article

BILINEAR SYSTEM IDENTIFICATION BY ESTIMATED VOLTERRA KERNELSINAGAKI M; KAMIYA R.1981; ELECTRICAL ENGINEERING IN JAPAN; ISSN 0036-9691; USA; DA. 1981 PUBL. 1982; VOL. 101; NO 3; PP. 110-116; BIBL. 8 REF.Article

DETERMINATION ALGEBRIQUE DES NOYAUX DE VOLTERRA ASSOCIES A CERTAINS SYSTEMES NON LINEAIRESLAMNABI LAGARRIGUE F; LAMNABHI M.1979; RIC. DI AUTOMAT.; ITA; DA. 1979; VOL. 10; NO 1; PP. 17-26; ABS. ENG; BIBL. 10 REF.Article

IDENTIFICATION DES NOYAUX DE VOLTERRA D'UN SYSTEME NON LINEAIRE PAR LA TRANSFORMEE DE WALSHMONSION M.1978; R.A.I.R.O., AUTOMAT.; FRA; DA. 1978; VOL. 12; NO 3; PP. 277-289; BIBL. 21 REF.Article

EMPLOI DES SERIES DE VOLTERRA POUR LA CONCEPTION DE SYSTEMES NON LINEAIRESPUPKOV KA; KAPALIN VI.1974; PROBL. CONTROL INFORM. THEORY; HUNGARY; DA. 1974; VOL. 3; NO 2; PP. 105-115; ABS. ANGL.; BIBL. 11 REF.; MEME DOC. ANGLArticle

IDENTIFICATION OF FACTORABLE VOLTERRA SYSTEMSBILLINGS SA; FAKHOURI SY.1979; PROC. I.E.E.; ISSN 0020-3270; GBR; DA. 1979; VOL. 126; NO 10; PP. 1018-1024; BIBL. 22 REF.Article

2ND-ORDER VOLTERRA KERNEL MEASUREMENT USING PSEUDORANDOM TERNARY SIGNALS AND DISCRETE FOURIER TRANSFORMSBARKER MA; DAVY RW.1979; PROC. INSTIT. ELECTR. ENGRS; GBR; DA. 1979; VOL. 126; NO 5; PP. 457-460; BIBL. 10 REF.Article

MULTIDIMENSIONAL LAGUERRE TRANSFORM.GAUTIER M; MONSION M; SAGASPE JP et al.1978; I.E.E.E. TRANS. AUTOMAT. CONTROL; USA; DA. 1978; VOL. 23; NO 3; PP. 488-489; BIBL. 5 REF.Article

On the realization of nonlinear discrete-time systemsMONACO, S; NORMAND-CYROT, D.Systems & control letters. 1984, Vol 5, Num 2, pp 145-152, issn 0167-6911Article

IDENTIFICATION OF VOLTERRA KERNELS OF A CLASS OF NONLINEAR SYSTEMS BY WALSH FUNCTION TECHNIQUESMOHAMMAD MAQUSI.1980; J. FRANKLIN INST.; ISSN 0016-0032; USA; DA. 1980; VOL. 310; NO 1; PP. 65-75; BIBL. 18 REF.Article

Bilinear system identification by Volterra kernels estimationINAGAKI, M; MOCHIZUKI, H.IEEE transactions on automatic control. 1984, Vol 29, Num 8, pp 746-749, issn 0018-9286Article

A SHIFT OPERATOR APPROACH TO BILINEAR SYSTEM THEORYFRAZHO AE.1980; SIAM J. CONTROL OPTIM.; ISSN 0363-0129; USA; DA. 1980; VOL. 18; NO 6; PP. 640-658; BIBL. 32 REF.Article

A NEW CROSS CORRELATION ALGORITHM FOR VOLTERRA KERNAL ESTIMATION OF BILINEAR SYSTEMSBAHETI RS; MOHLER RR; SPANG HA III et al.1979; I.E.E.E. TRANS. AUTOMAT. CONTROL; USA; DA. 1979; VOL. 24; NO 4; PP. 661-664; BIBL. 10 REF.Article

On finite dimensional realization theory of discrete time nonlinear systemsSCHWARZ, C. A; DICKINSON, B. W.Systems & control letters. 1986, Vol 7, Num 2, pp 117-123, issn 0167-6911Article

SUR L'IDENTIFICATION DES SYSTEMES NON LINEAIRES. APPLICATION A UN PROCESSUS PHYSIOLOGIQUE.GAUTIER M.1976; AO-CNRS-12953; FR.; DA. 1976; PP. 1-176; H.T. 9; BIBL. 5 P.; (THESE DOCT.-ING.; BORDEAUX I)Thesis

Structural classification of multi-input nonlinear systemsCHEN, H.-W; JACOBSON, L. D; GASKA, J. P et al.Biological cybernetics. 1990, Vol 63, Num 5, pp 341-357, issn 0340-1200, 17 p.Article

Characterization of the kernel of the operator CURL CURLCIARLET, Philippe G; CIARLET, Patrick; GEYMONAT, Giuseppe et al.Comptes rendus. Mathématique. 2007, Vol 344, Num 5, pp 305-308, issn 1631-073X, 4 p.Article

Spherical functions on ordered symmetric spacesFARAUT, J; HILGERT, J; OLAFSSON, G et al.Annales de l'Institut Fourier. 1994, Vol 44, Num 3, pp 927-966, issn 0373-0956Article

On weak Brownian motions of arbitrary orderFÖLLMER, H; WU, C.-T; YOR, M et al.Annales de l'I.H.P. Probabilités et statistiques. 2000, Vol 36, Num 4, pp 447-487, issn 0246-0203Article

  • Page / 2