Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("OPTIMAL FLOW")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Language

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 664

  • Page / 27

Export

Selection :

  • and

MAXIMUM FLOW IN NETWORKS WITH A SMALL NUMBER OF RANDOM ARC CAPACITIESSOMERS JE.1982; NETWORKS; ISSN 0028-3045; USA; DA. 1982; VOL. 12; NO 3; PP. 241-253; BIBL. 9 REF.Article

MINIMUM COST FLOW WITH SET-CONSTRAINTSHASSIN R.1982; NETWORKS; ISSN 0028-3045; USA; DA. 1982; VOL. 12; NO 1; PP. 1-21; BIBL. 12 REF.Article

AN EXTENDED ABSTRACT OF AN INDEPTH ALGORITHMIC AND COMPUTATIONAL STUDY FOR MAXIMUM FLOW PROBLEMSGLOVER F; KLINGMAN D; MOTE J et al.1980; DISCRETE APPL. MATH.; NLD; DA. 1980; VOL. 2; NO 3; PP. 251-254; BIBL. 4 REF.Article

A GENERALIZED DYNAMIC FLOWS PROBLEMHALPERN J.1979; NETWORKS; USA; DA. 1979; VOL. 9; NO 2; PP. 133-167; BIBL. 9 REF.Article

AN AUGMENTING PATH METHOD FOR SOLVING LINEAR BOTTLENECK TRANSPORTATION PROBLEMSDERIGS U; ZIMMERMANN U.1979; COMPUTING; AUT; DA. 1979; VOL. 22; NO 1; PP. 1-15; ABS. GER; BIBL. 16 REF.Article

EIN GRAPHENTHEORETISCHER ALGORITHMUS FUER EINIGE FLUSSPROBLEME IN NETZWERKEN MIT KANTENGEWINNEN. = UN ALGORITHME DE LA THEORIE DES GRAPHES POUR QUELQUES PROBLEMES DE FLOTS DANS DES RESEAUX DE TRANSFERT AVEC GAINSHORST R.1976; COMPUTING; AUSTR.; DA. 1976; VOL. 17; NO 2; PP. 121-127; ABS. ANGL.; BIBL. 6 REF.Article

MINIMAX COST FLOW PROBLEMICHIMORI T; MURATA M; ISHII H et al.1980; TECHNOL. REP. OSAKA UNIV.; ISSN 0030-6177; JPN; DA. 1980; VOL. 30; NO 1517-1550; PP. 39-44; BIBL. 3 REF.Article

MAXIMALNI TOK PARAMETRICKY OHODNOCENOU SITI = FLOT MAXIMAL DANS UN RESEAU PARAMETRIQUEKRAUS V.1982; EKON-MAT. DOZ.; ISSN 0013-3027; CSK; DA. 1982; VOL. 18; NO 3; PP. 266-284; ABS. ENG; BIBL. 4 REF.Article

PROBLEME PARAMETRIQUE LINEAIRE DE RECHERCHE DE LA CIRCULATION DE COUT MINIMAL DANS UN RESEAUSEROV SS.1981; AVTOM. TELEMEH.; ISSN 0005-2310; SUN; DA. 1981; NO 5; PP. 119-128; ABS. ENG; BIBL. 5 REF.Article

A CUT-FLOW PROCEDURE FOR TRANSPORTATION NETWORK OPTIMIZATIONPETERSON BE.1980; NETWORKS; USA; DA. 1980; VOL. 10; NO 1; PP. 33-43; BIBL. 8 REF.Article

TWO PROBLEMS IN MULTICOMMODITY NETWORKSANEJA YP; NAIR KPK.1979; R.A.I.R.O., RECH. OPERAT.; FRA; DA. 1979; VOL. 13; NO 2; PP. 135-142; ABS. FRE; BIBL. 3 REF.Article

PROBLEME DE TRANSPORT SUR UN RESEAU AVEC AMPLIFICATION DANS LES ARCSKATSNEL'SON MB; KHRANOVICH IL.1979; AVTOMAT. I TELEMEKH.; SUN; DA. 1979; NO 1; PP. 98-109; ABS. ENG; BIBL. 17 REF.Article

SUR UN ALGORITHME DE RESOLUTION D'UN PROBLEME DE DISTRIBUTIONGABASOV R; KOSTYUKOVA OI.1979; IZVEST. AKAD. NAUK S.S.S.R., TEKH. KIBERN.; SUN; DA. 1979; NO 2; PP. 36-43; BIBL. 5 REF.Article

OPTIMAL FLOWS IN NONLINEAR GAIN NETWORKS.TRUEMPER K.1978; NETWORKS; U.S.A.; DA. 1978; VOL. 8; NO 1; PP. 17-36; BIBL. 2 P. 1/2Article

RINAL SIMPLEX NETWORK CODES: STATE-OF-THE-ART IMPLANTATION TECHNOLOGYALI AI; HELGASON RV; KENNINGTON JL et al.1978; NETWORKS; USA; DA. 1978; VOL. 8; NO 4; PP. 315-339; BIBL. 29 REF.Article

METHODES DE RESOLUTION DES PROBLEMES NON LINEAIRES DE TRANSPORT EN RESEAUGERLOVIN EH L; SROGOVICH EB.1978; EKON. MAT. METODY; SUN; DA. 1978; VOL. 14; NO 6; PP. 1189-1196; BIBL. 9 REF.Article

A SURVEY OF LINEAR COST MULTICOMMODITY NETWORK FLOWS.KENNINGTON JL.1978; OPER. RES.; USA; DA. 1978; VOL. 26; NO 2; PP. 209-236; BIBL. 4 P.Article

ON MAX FLOWS WITH GAINS AND PURE MIN-COST FLOWS.TRUEMPER K.1977; S.I.A.M. J. APPL. MATH.; U.S.A.; DA. 1977; VOL. 32; NO 2; PP. 450-456; BIBL. 27 REF.Article

MAXIMUM FLOW IN A NETWORK WITH FUZZY ARC CAPACITIESCHANAS S; KOLODZIEJCZYK W.1982; FUZZY SETS SYST.; ISSN 0165-0114; NLD; DA. 1982; VOL. 8; NO 2; PP. 165-173; BIBL. 7 REF.Article

EQUILIBRIUM VS SYSTEM-OPTIMAL FLOW: SOME EXAMPLESSTEWART NF.1980; TRANSP. RES., A; GBR; DA. 1980; VOL. 14; NO 2; PP. 81-84; BIBL. 6 REF.Article

PROBLEMY OPTIMALNI ORGANIZACE TOKU V DOPRAVNI SITI = ORGANISATION OPTIMALE DES FLOTS DANS UN RESEAU DE TRANSPORTPLASIL J.1980; EKON.-MAT. OBZ.; CSK; DA. 1980; VOL. 16; NO 1; PP. 56-63; ABS. ENGArticle

ALGORITHME DE DECOMPOSITION D'UN RESEAU POUR LA RESOLUTION DU PROBLEME DU FLOT MAXIMALAKULICH FE.1978; VESCI AKAD. NAVUK B.S.S.R., FIZ.-MAT. NAVUK; S.S.S.R.; DA. 1978; NO 1; PP. 33-37; ABS. ANGL.; BIBL. 4 REF.Article

SYSTEME DE FLOTS DANS UN RESEAULOMONOSOV MV.1978; PROBL. PEREDACHI INFORM.; SUN; DA. 1978; VOL. 14; NO 4; PP. 60-73; BIBL. 10 REF.Article

SUR LE CALCUL DE LA CAPACITE DE TRANSMISSION DES RESEAUX DYNAMIQUESMEJZIN LK.1983; AVTOMATIKA I TELEMEHANIKA; ISSN 0005-2310; SUN; DA. 1983; NO 8; PP. 142-149; ABS. ENG; BIBL. 6 REF.Article

MAXIMALE FLUESSE IN NETZWERKEN MIT KANTENGEWINNEN: VERGLEICH DREIER ALGORITHMEN = FLOTS MAXIMAUX DANS LES RESEAUX AVEC GAINS: COMPARAISON DE TROIS ALGORITHMESHORST R.1980; ANGEW. INFORMAT.; DEU; DA. 1980; VOL. 22; NO 3; PP. 116-118; ABS. ENG; BIBL. 10 REF.Article

  • Page / 27