Pascal and Francis Bibliographic Databases


Search results

Your search

kw.\*:("Problema mal planteado")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV


A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 1801

  • Page / 73

Selection :

  • and

Optimization in the regularization of ill-posed problemsDAVIES, A. R; ANDERSSEN, R. S.Journal of the Australian Mathematical Society. Series B. Applied mathematics. 1986, Vol 28, Num 1, pp 114-133, issn 0334-2700Article

Regularization of the deflectometry problem using shading dataBALZER, Jonathan; WERLING, Stefan; BEYERER, Jürgen et al.Proceedings of SPIE, the International Society for Optical Engineering. 2006, pp 63820B.1-63820B.11, issn 0277-786X, isbn 0-8194-6480-5, 1VolConference Paper

Mahalanobis distance-based traffic matrix estimationDINGDEJIANG; XINGWEI WANG; LEI GUO et al.European transactions on telecommunications. 2010, Vol 21, Num 3, pp 195-201, issn 1124-318X, 7 p.Article

The Lepskii principle revisitedMATHE, Peter.Inverse problems. 2006, Vol 22, Num 3, issn 0266-5611, L11-L15Article

Computational tomographic reconstruction for limited ill-posed interferometrid dataSUN, H; CHA, S. S.Optics and lasers in engineering. 1992, Vol 17, Num 3-5, pp 167-178, issn 0143-8166Article

Interprétation régularisée des périodogrammes et extensions non quadratiques = Regularized interpretation of periodograms and non quadratic extensionIDIER, J; GIOVANNELLI, J.-F; CIUCIU, P et al.Colloque sur le traitement du signal et des images. 1997, pp 695-698, 2VolConference Paper

A regularization method for nonlinear ill-posed problemsWEESE, J.Computer physics communications. 1993, Vol 77, Num 3, pp 429-440, issn 0010-4655Article

Solution of the Hausdorff moment problem by the use of Pollaczek polynomialsVIANO, G. A.Journal of mathematical analysis and applications. 1991, Vol 156, Num 2, pp 410-427, issn 0022-247XArticle

Feature reconstruction in inverse problemsLOUIS, Alfred K.Inverse problems. 2011, Vol 27, Num 6, issn 0266-5611, 065010.1-065010.21Article

Regularization strategies for a two-dimensional inverse heat conduction problemZHI QIAN; FU, Chu-Li.Inverse problems. 2007, Vol 23, Num 3, pp 1053-1068, issn 0266-5611, 16 p.Article

Recovery of two transparent primitive images from two framesTORO, Javier; MEDINA, Rubén; ZIOU, Diemel et al.ICASSP. 2004, isbn 0-7803-8484-9, vol III, 225-228Conference Paper

Assessing mixing models within a common frameworkAKERJORD, M.-A; CHRISTOPHERSEN, N.Environmental science & technology. 1996, Vol 30, Num 7, pp 2105-2112, issn 0013-936XArticle

Convergence of Tikhonov regularization for constrained ill-posed inverse problemsCHAVENT, G; KUNISCH, K.Inverse problems. 1994, Vol 10, Num 1, pp 63-76, issn 0266-5611Article

ε-entropy and ε-capacity in the theory of ill-posed problemsSCALAS, E; VIANO, G. A.Inverse problems. 1993, Vol 9, Num 5, pp 545-550, issn 0266-5611Article

Regularization of ill-posed problems: optimal parameter choice in finite dimensionsGROETSCH, C. W; NEUBAUER, A.Journal of approximation theory. 1989, Vol 58, Num 2, pp 184-200, issn 0021-9045Article

On condition numbers and the distance to the nearest ill-posed problemDEMMEL, J. W.Numerische Mathematik. 1987, Vol 51, Num 3, pp 251-289, issn 0029-599XArticle

Regularization methods for ill-posed problems in multiple Hilbert scalesMAZZIERI, Gisela L; SPIES, Ruben D.Inverse problems. 2012, Vol 28, Num 5, issn 0266-5611, 055005.1-055005.30Article

Simplify the RFM based on the Anti-ill-posed AlgorithmsLIBO CHEN; WEILI JIAO.Proceedings of SPIE, the International Society for Optical Engineering. 2010, Vol 7840, issn 0277-786X, isbn 978-0-8194-8363-8, 784013.1-784013.8Conference Paper

Fixed-point iterations in determining the Tikhonov regularization parameterVILOCHE BAZAN, Fermin S.Inverse problems. 2008, Vol 24, Num 3, issn 0266-5611, 035001.1-035001.15Article

Numerical methods for experimental design of large-scale linear ill-posed inverse problemsHABER, E; HORESH, L; TENORIO, L et al.Inverse problems. 2008, Vol 24, Num 5, issn 0266-5611, 055012.1-055012.17Article

Optimal regularization with two interdependent regularization parametersBAUER, Frank; IVANYSHYN, Olha.Inverse problems. 2007, Vol 23, Num 1, pp 331-342, issn 0266-5611, 12 p.Article

A stability estimate for ill-posed elliptic Cauchy problems in a domain with comersBOURGEOIS, Laurent.Comptes rendus. Mathématique. 2007, Vol 345, Num 7, pp 385-390, issn 1631-073X, 6 p.Article

Rapid three-dimensional inversion of multi-transmitter electromagnetic data using the spectral Lanczos decomposition method : Electromagnetic characterization of buried obstaclesZHDANOV, Michael S; CHERNYAVSKIY, Alexey.Inverse problems. 2004, Vol 20, Num 6, pp S233-S256, issn 0266-5611Article

An elimination method for linear problemsABRAMOV, A. A; YUKHNO, L. F.Computational mathematics and mathematical physics. 1998, Vol 38, Num 4, pp 527-535, issn 0965-5425Article

The discretization of ill-posed problemsSOLODKII, S. G.Computational mathematics and mathematical physics. 1996, Vol 36, Num 8, pp 991-996, issn 0965-5425Article

  • Page / 73