Pascal and Francis Bibliographic Databases


Search results

Your search

kw.\*:("Proximal point method")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV


A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 142

  • Page / 6

Selection :

  • and

A proximal point algorithm for control approximation problems. Part I: Theoretical backgroundBENKER, H; HAMEL, A; TAMMER, C et al.ZOR. Zeitschrift für Operations-Research. 1996, Vol 43, Num 3, pp 261-280, issn 0340-9422Article

Strong convergence of a proximal-based method for convex optimizationAZHMYAKOV, Vadim; SCHMIDT, Werner H.Mathematical methods of operations research (Heidelberg). 2003, Vol 57, Num 3, pp 393-407, issn 1432-2994, 15 p.Article

An extension of proximal methods for quasiconvex minimization on the nonnegative orthantPAPA QUIROZ, E. A; OLIVEIRA, P. Roberto.European journal of operational research. 2012, Vol 216, Num 1, pp 26-32, issn 0377-2217, 7 p.Article

A primal-dual proximal point algorithm for constrained convex programsHAMDI, Abdelouahed.Applied mathematics and computation. 2005, Vol 162, Num 1, pp 293-303, issn 0096-3003, 11 p.Article

A proximal regularization of the steepest descent methodIUSEM, A. N; SVAITER, B. F.RAIRO. Recherche opérationnelle. 1995, Vol 29, Num 2, pp 123-130, issn 0399-0559Article

Approximate iterations in Bregman-function-based proximal algorithmsECKSTEIN, J.Mathematical programming. 1998, Vol 83, Num 1, pp 113-123, issn 0025-5610Article

Finite convergence of a projected proximal point algorithm for the generalized variational inequalitiesHAIBIN CHEN; YIJU WANG; HONGGE ZHAO et al.Operations research letters. 2012, Vol 40, Num 4, pp 303-305, issn 0167-6377, 3 p.Article

Proximal Point Algorithms for General Variational InequalitiesLI, M; LIAO, L. Z; YUAN, X. M et al.Journal of optimization theory and applications. 2009, Vol 142, Num 1, pp 125-145, issn 0022-3239, 21 p.Article

A new proximal point iteration that converges weakly but not in normBAUSCHKE, H. H; BURKE, J. V; DEUTSCH, F. R et al.Proceedings of the American Mathematical Society. 2005, Vol 133, Num 6, pp 1829-1835, issn 0002-9939, 7 p.Article

On the twice differentiable cubic augmented LagrangianKIWIEL, K. C.Journal of optimization theory and applications. 1996, Vol 88, Num 1, pp 233-236, issn 0022-3239Article

Coupling proximal methods and variational convergenceMOUDAFI, A.ZOR. Zeitschrift für Operations-Research. 1993, Vol 38, Num 3, pp 269-280, issn 0340-9422Article

Proximal methods for cohypomonotone operatorsCOMBETTES, Patrick L; PENNANEN, Teemu.SIAM journal on control and optimization. 2005, Vol 43, Num 2, pp 731-742, issn 0363-0129, 12 p.Article

The improvement with relative errors of He et al.'s inexact alternating direction method for monotone variational inequalitiesYUAN, Xiao-Ming.Mathematical and computer modelling. 2005, Vol 42, Num 11-12, pp 1225-1236, issn 0895-7177, 12 p.Article

Central Paths in Semidefinite Programming, Generalized Proximal-Point Method and Cauchy Trajectories in Riemannian ManifoldsDA CRUZ NETO, J. X; FERREIRA, O. P; OLIVEIRA, P. R et al.Journal of optimization theory and applications. 2008, Vol 139, Num 2, pp 227-242, issn 0022-3239, 16 p.Article

Application of the proximal point method to nonmonotone equilibrium problemsKONNOV, I. V.Journal of optimization theory and applications. 2003, Vol 119, Num 2, pp 317-333, issn 0022-3239, 17 p.Article

An approximate proximal-extragradient type method for monotone variational inequalitiesHE, Bing-Sheng; YANG, Zhen-Hua; YUAN, Xiao-Ming et al.Journal of mathematical analysis and applications. 2004, Vol 300, Num 2, pp 362-374, issn 0022-247X, 13 p.Article

Linear convergence of epsilon-subgradient descent methods for a class of convex functionsROBINSON, S. M.Mathematical programming. 1999, Vol 86, Num 1, pp 41-50, issn 0025-5610Article

Contribution aux méthodes proximales et applications à la régression linéaire l1 = Proximal Methods and Applications to l1 linear regressionDaldoul, Mabrouk; Michelot, C.1995, 128 p.Thesis

Perturbed proximal point algorithm and some of its applicationsTOSSINGS, P.Applied mathematics & optimization. 1994, Vol 29, Num 2, pp 125-159, issn 0095-4616Article

Proximal methods for mixed variational inequalitiesNOON, M. A.Journal of optimization theory and applications. 2002, Vol 115, Num 2, pp 447-452, issn 0022-3239, 6 p.Article

The primal Douglas-Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problemFUKUSHIMA, M.Mathematical programming. 1996, Vol 72, Num 1, pp 1-15, issn 0025-5610Article

A generalized proximal point algorithm for the nonlinear complementarity problemBURACHIK, R. S; IUSEM, A. N.RAIRO. Recherche opérationnelle. 1999, Vol 33, Num 4, pp 447-479, issn 0399-0559Article

Solving multistage stochastic network programs on massively parallel computersNIELSEN, S. S; ZENIOS, S. A.Mathematical programming. 1996, Vol 73, Num 3, pp 227-250, issn 0025-5610Article

Some properties of generalized proximal point methods for quadratic and linear programmingIUSEM, A. N.Journal of optimization theory and applications. 1995, Vol 85, Num 3, pp 593-612, issn 0022-3239Article

A descent method with linear programming subproblems for nondifferentiable convex optimizationKIM, S; CHANG, K.-N; LEE, J.-Y et al.Mathematical programming. 1995, Vol 71, Num 1, pp 17-28, issn 0025-5610Article

  • Page / 6