Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("REGLE ARRET")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Language

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 793

  • Page / 32
Export

Selection :

  • and

THE ADVANTAGE OF USING NON-MEASURABLE STOP RULESHILL TP; PESTIEN VC.1983; ANNALS OF PROBABILITY; ISSN 0091-1798; USA; DA. 1983; VOL. 11; NO 2; PP. 442-450; BIBL. 12 REF.Article

A NOTE ON OPTIMAL STOPPING FOR SUCCESS RUNS.ROSS SM.1975; ANN. STATIST.; U.S.A.; DA. 1975; VOL. 3; NO 3; PP. 793-795; BIBL. 4 REF.Article

A SECRETARY PROBLEM WITH FINITE MEMORY.SMITH MH; DEELY JJ.1975; J. AMER. STATIST. ASS.; U.S.A.; DA. 1975; VOL. 70; NO 350; PP. 357-361; BIBL. 7 REF.Article

OPTIMAL STOPPING VARIABLES FOR BROWNIAN NOTION.WALKER LH.1974; ANN. PROBAB.; U.S.A.; DA. 1974; VOL. 2; NO 2; PP. 317-320; BIBL. 5 REF.Article

SUR QUELQUES PROBLEMES D'ARRET OPTIMAL DES PROCESSUS ALEATOIRES STABLESMATSKYAVICHYUS V.1972; LITOV. MAT. SBOR.; S.S.S.R.; DA. 1972; VOL. 12; NO 1; PP. 173-180; ABS. LITU. ANGL.; BIBL. 6 REF.Serial Issue

RATIO COMPARISONS OF SUPREMUM AND STOP RULE EXPECTATIONSHILL TP; KERTZ RP.1981; Z. WAHRSCHEINLICHKEITSTHEOR. VERW. GEB.; ISSN 0044-3719; DEU; DA. 1981; VOL. 56; NO 2; PP. 283-285; BIBL. 5 REF.Article

A SECRETARY PROBLEM WITH UNCERTAIN EMPLOYMENT.SMITH MH.1975; J. APPL. PROBABIL.; G.B.; DA. 1975; VOL. 12; NO 3; PP. 620-624; BIBL. 8 REF.Article

A SEQUENTIAL SCREENING PROCEDURE.MARCUS R; BLUMENTHAL S.1974; TECHNOMETRICS; U.S.A.; DA. 1974; VOL. 16; NO 2; PP. 229-234; BIBL. 13 REF.Article

ON A SIMPLE OPTIMAL STOPPING PROBLEMBOYCE WM.1973; DISCRETE MATH.; NETHERL.; DA. 1973; VOL. 5; NO 4; PP. 297-312; BIBL. 6 REF.Serial Issue

A STOPPING RULE FOR THRESHOLD LEARNINGSKLANSKY J; RAMANUJAM HR.1973; INTERNATION. J. SYST. SCI.; G.B.; DA. 1973; VOL. 4; NO 1; PP. 129-148; BIBL. 14 REF.Serial Issue

A STOPPING RULE FOR TRAINABLE ONE-DIMENSIONAL THRESHOLD LEARNINGSKLANSKY J; RAMANUJAM HR.1972; I.E.E.E. TRANS. SYST. MAN CYBERN.; U.S.A.; DA. 1972; VOL. 2; NO 4; PP. 553-557; BIBL. 4 REF.Serial Issue

TRANSITIVITY IN PROBLEMS OF OPTIMAL STOPPINGIRLE A.1981; ANN. PROBAB.; ISSN 0091-1798; USA; DA. 1981; VOL. 9; NO 4; PP. 642-647; BIBL. 7 REF.Article

TERMINATION, MOMENTS AND EXPONENTIAL BOUNDEDNESS OF THE STOPPING RULE FOR CERTAIN INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS.TZE LEUNG LAI.1975; ANN. STATIST.; U.S.A.; DA. 1975; VOL. 3; NO 3; PP. 581-598; BIBL. 25 REF.Article

APPROXIMATIONS TO THE EXPECTED SAMPLE SIZE OF CERTAIN SEQUENTIAL TESTS.POLLAK M; SIEGMUND D.1975; ANN. STATIST.; U.S.A.; DA. 1975; VOL. 3; NO 6; PP. 1267-1282; BIBL. 13 REF.Article

OPTIMAL SEQUENTIAL SELECTION OF A MONOTONE SEQUENCE FROM A RANDOM SAMPLESAMUELS SM; STEELE JM.1981; ANN. PROBAB.; ISSN 0091-1798; USA; DA. 1981; VOL. 9; NO 6; PP. 937-947; BIBL. 7 REF.Article

OPTIMAL STOPPING RULES FOR DIFFUSION PROCESSES.TOBIAS T.sdIN: STOCHASTIC CONTROL SYMP. PREPR.; BUDAPEST; 1974; S.L.; DA. S.D.; PP. 255-258; BIBL. 8 REF.Conference Paper

AN OPTIMAL STOPPING RULE FOR SN/N RELATED TO MARTINGALESHANAK G.1979; STUD. SCI. MATH. HUNG.; ISSN 0081-6906; HUN; DA. 1979; VOL. 14; NO 1-3; PP. 99-104; BIBL. 10 REF.Article

ESTIMATING A MEAN FROM DELAYED OBSERVATIONS.STARR N; WARDROP R; WOODROOFE M et al.1976; Z. WAHRSCHEIN-THEOR. VERWANDTE GEB.; DTSCH.; DA. 1976; VOL. 35; NO 2; PP. 103-113; BIBL. 10 REF.Article

THE POLICY ITERATION METHOD FOR THE OPTIMAL STOPPING OF A MARKOV CHAIN WITH AN APPLICATION.VAN HEE KM.1976; LECTURE NOTES COMPUTER SCI.; GERM.; DA. 1976; VOL. 41; PP. 22-36; BIBL. 7 REF.; (OPTIMIZATION TECH. MODELING OPTIMIZATION SERV. MAN. 7 TH IFIP CONF. PROC. II; NICE; 1975)Conference Paper

STOPPING SEQUENCES.DINGES H.1974; LECTURE NOTES MATH.; GERM.; DA. 1974; NO 381; PP. 27-36; BIBL. 7 REF.Article

A NOTE ON THE INCOMPATIBILITY OF ONE-SIDED BAYES AND FREQUENCY CONFIDENCE INTERVALS.JOSHI VM.1974; J. R. STATIST. SOC., B; G.B.; DA. 1974; VOL. 36; NO 2; PP. 237-242; BIBL. 4 REF.Article

ON A SEQUENTIAL STOPPING RULE FOR FIXED-SAMPLE ACCEPTANCE TESTSSCHAFER RE.1972; OPER. RES.; U.S.A.; DA. 1972; VOL. 20; NO 4; PP. 913-914; BIBL. 2 REF.Serial Issue

ARRET OPTIMAL DES PROCESSUS DE DIFFUSION SEMI-STABLESKUDZHMA RA.1972; LITOV. MAT. SBOR.; S.S.S.R.; DA. 1972; VOL. 12; NO 4; PP. 99-112; ABS. LITU. ANGL.; BIBL. 13 REF.Serial Issue

A CLASS OF STOPPING RULES FOR FIXED PRECISION SEQUENTIAL ESTIMATESZIELINSKI R.1982; ZASTOS. MAT.; ISSN 0044-1899; POL; DA. 1982; VOL. 17; NO 2; PP. 277-281; ABS. POL; BIBL. 3 REF.Article

A TWO STAGE PROCEDURE FOR SELECTING DELTA -OPTIMAL MEANS IN THE NORMAL MODEL.SANTNER TJ.1976; COMMUNIC. STATIST., THEORY METHODS; U.S.A.; DA. 1976; VOL. 5; NO 3; PP. 283-292; BIBL. 7 REF.Article

  • Page / 32