Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("SYSTEME NON CONSERVATIF")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Language

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 688

  • Page / 28
Export

Selection :

  • and

CHOC HYDRAULIQUE DANS LES SYSTEMES HYDRAULIQUES NON CONSERVATIFSKARTVELISHVILI LN.1978; GIDROMEKHANIKA; S.S.S.R.; DA. 1978; NO 38; PP. 52-58; BIBL. 4 REF.Article

DETERMINATION DES PARAMETRES D'UN SYSTEME AUTOOSCILLANT A PARTIR DE L'ANALYSE DES OSCILLATIONS FORCEESPLAKHTIENKO NP.1975; PRIKL. MEKH., U.S.S.R.; S.S.S.R.; DA. 1975; VOL. 11; NO 12; PP. 75-81; BIBL. 6 REF.Article

STABILITY OF A GYROSCOPIC NON-CONSERVATIVE SYSTEM. = STABILITE D'UN SYSTEME GYROSCOPIQUE NON CONSERVATIFHAUGER W.1975; J. APPL. MECH.; U.S.A.; DA. 1975; VOL. 42; NO 3; PP. 739-740; BIBL. 4 REF.Article

ON VARIATIONAL METHODS FOR NONCONSERVATIVE PROBLEMS. = METHODES VARIATIONNELLES POUR LES PROBLEMES NON CONSERVATIFSDUBEY RN; LEIPHOLZ HHE.1975; MECH. RES. COMMUNIC.; G.B.; DA. 1975; VOL. 2; NO 2; PP. 55-59; BIBL. 7 REF.Article

EXACT CALCULATION OF BUCKLING LOADS OF ELASTIC BARS SUBJECTED TO TANGENTIAL FORCES. = CALCUL EXACT DES CHARGES DE FLAMBAGE DE BARRES ELASTIQUES SOUMISES A DES FORCES TANGENTIELLES SUIVEUSESHAUGER W; LEONHARD M.1976; MECH. RES. COMMUNIC.; G.B.; DA. 1976; VOL. 3; NO 1; PP. 39-43; BIBL. 4 REF.Article

NOETHER'S THEORY IN CLASSICAL NONCONSERVATIVE MECHANICS. = THEORIE DE NOETHER EN MECANIQUE NON CONSERVATRICE CLASSIQUEDJUKIC DS; VUJANOVIC BD.1975; ACTA MECH.; AUTR.; DA. 1975; VOL. 23; NO 1-2; PP. 17-27; ABS. ALLEM.; BIBL. 1 P.Article

STABILITE DES SYSTEMES NON CONSERVATIFSKARAPETYAN AV.1975; VEST. MOSKOV. UNIV.; S.S.S.R.; DA. 1975; VOL. 30; NO 4; PP. 109-113; ABS. ANGL.; BIBL. 6 REF.Article

ON THE DERIVATION OF LEIPHOLZ'S VARIATIONAL PRINCIPLE FOR NONCONSERVATIVE STABILITY PROBLEMS.BUFLER H.1974; MECH. RES. COMMUNIC.; G.B.; DA. 1974; VOL. 1; NO 5-6; PP. 281-284; BIBL. 3 REF.Article

REMARKS ON THE DUFFIN BRACKET FOR NONCONSERVATIVE SYSTEMSSRINIVAS MD; SHANKARA TS.1973; LETTERE NUOVO CIMENTO; ITAL.; DA. 1973; VOL. 6; NO 9; PP. 321-324; BIBL. 6 REF.Serial Issue

L'ENTROPIE FINE, LA MECANIQUE DISSIPATIVE ET LA NOTION DE MASSE AU REPOS VARIABLEFRONTEAU J.1973; ANN. INST. HENRI POINCARE, A; FR.; DA. 1973; VOL. 18; NO 2; PP. 99-119; BIBL. 1 P. 1/2Serial Issue

SULLA INSTABILITA ELASTICA INDOTTA DA FORZE NON CONSERVATIVE. = INSTABILITE ELASTIQUE INDUITE PAR DES CONTRAINTES NON CONSERVATIVESZANABONI O.1972; ATTI IST. SCI. COSTR. UNIV. PISA; ITAL.; DA. 1972; VOL. 13; PP. 168-182; BIBL. 4 REF.Article

THERMOELASTIC STABILITY OF FIRST STRAIN GRADIENT SOLIDS.GOODARZ AHMADI.1977; INTERNATION. J. NON-LINEAR MECH.; G.B.; DA. 1977; VOL. 12; NO 1; PP. 23-32; ABS. FR. ALLEM.; BIBL. 33 REF.Article

STABILITY ANALYSIS OF PREDATOR-PREY MODELS VIA LIAPUNOV METHOD.GATTO M; RINALDI S.1976; LECTURES NOTES COMPUTER SCI.; GERM.; DA. 1976; VOL. 40; PP. 103-109; BIBL. 4 REF.; (OPTIMIZATION TECH. 7TH IFIP CONF. OPTIMIZATION TECH. PROC. I.; NICE; 1975)Conference Paper

STABILITY OF ELASTIC RODS VIA LIAPUNOV'S SECOND METHOD.LEIPHOLZ HHE.1975; INGR-ARCH.; DTSCH.; DA. 1975; VOL. 44; NO 1; PP. 21-26; ABS. ALLEM.; BIBL. 6 REF.Article

A NONCONSERVATIVE STABILITY PROBLEM WITH UNSTABLE POSITIONS OF EQUILIBRIUM FOR ARBITRARILY SMALL LOADS.HAUGER W.1974; MECH. RES. COMMUNIC.; G.B.; DA. 1974; VOL. 1; NO 5-6; PP. 263-267; BIBL. 2 REF.Article

DERIVATIVES OF EIGENVALUES AND EIGENVECTORS IN NON-SELF-ADJOINT SYSTEMSPLAUT RH; HUSEYIN K.1973; A.I.A.A. J., NEW YORK; U.S.A.; DA. 1973; VOL. 11; NO 2; PP. 250-251; BIBL. 8 REF.Serial Issue

THE SOLUTION OF JACOBI'S VIRIAL EQUATION FOR NONCONSERVATIVE SYSTEMS AND ANALYSIS OF ITS DEPENDENCE ON PARAMETERSFERRONSKY VI; DENISK SA; FERRONSKY SV et al.1979; CELEST. MECH.; NLD; DA. 1979; VOL. 20; NO 2; PP. 143-172; BIBL. 10 REF.Article

STABILITE DES TAILLES HORIZONTALES DANS LES MASSIFS POSSEDANT DES PROPRIETES ELASTO-VISCO-PLASTIQUESSPORYKHIN AN.1975; IZVEST. AKAD. NAUK KAZAKH. S.S.R., SER. FIZ.-MAT.; S.S.S.R.; DA. 1975; VOL. 13; NO 1; PP. 67-72; ABS. KAZ.; BIBL. 8 REF.Article

DEGREE OF STABILITY OF EQUILIBRIUM.HOLZER SM.1974; J. STRUCT. MECH.; U.S.A.; DA. 1974; VOL. 3; NO 1; PP. 61-75; BIBL. 19 REF.Article

GENERALIZATION OF AN ENERGETIC OPTIMALITY CONDITION FOR NONCONSERVATIVE SYSTEMS.VEPA K.1973; J. STRUCT. MECH.; U.S.A.; DA. 1973; VOL. 2; NO 3; PP. 229-257; BIBL. 14 REF.Article

ON THE EQUATIONS GOVERNING THE FREE AND FORCED VIBRATIONS OF A GENERAL NON-CONSERVATIVE SYSTEM. = EQUATIONS GOUVERNANT LES VIBRATIONS LIBRES ET FORCEES D'UN SYSTEME GENERAL NON CONSERVATIFWAHED IFA; BISHOP RED.1976; J. MECH. ENGNG SCI.; G.B.; DA. 1976; VOL. 18; NO 1; PP. 6-10; BIBL. 5 REF.Article

MECANISMES DE PERTE DE STABILITE DE SYSTEMES CONTINUS ELASTIQUES CONSERVATIFS ET NON CONSERVATIFSROTGAUZ BA.1976; STROITEL. MEKH. RASCHET SOORUZH.; S.S.S.R.; DA. 1976; NO 1; PP. 35-38; BIBL. 8 REF.Article

STABILITY OF A COMPRESSIBLE ROD SUBJECTED TO NON-CONSERVATIVE FORCES. = STABILITE D'UNE POUTRE COMPRESSIBLE SOUMISE A DES FORCES NON CONSERVATIVESHAUGER W.1975; J. APPL. MECH.; U.S.A.; DA. 1975; VOL. 42; NO 4; PP. 887-888; BIBL. 5 REF.Article

ON THE STABILITY AND EIGENCURVES OF AN ELASTIC SYSTEM SUBJECTED TO CONSERVATIVE AND NON CONSERVATIVE FORCES.SUNDARARAJAN C.1974; Z. ANGEW. MATH. MECH.; DTSCH.; DA. 1974; VOL. 54; NO 7; PP. 434-436; BIBL. 6 REF.Article

ON CERTAIN NONCONSERVATIVE ELASTIC SYSTEMS HAVING DIVERGENCE BUCKLING LOADS.LEIPHOLZ H.1974; MECH. RES. COMMUNIC.; G.B.; DA. 1974; VOL. 1; NO 4; PP. 245-249; BIBL. 3 REF.Article

  • Page / 28