Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("Student distribution")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Language

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 437

  • Page / 18
Export

Selection :

  • and

A retrievable recipe for inverse tGAVER, D. P; KAFADAR, K.The American statistician. 1984, Vol 38, Num 4, pp 308-311, issn 0003-1305Article

A modification of the Fisher-Cornish approximation for the student t percentilesGEORGE, E. O; MEENAKSHI SIVARAM.Communications in statistics. Simulation and computation. 1987, Vol 16, Num 4, pp 1123-1132, issn 0361-0918Article

A note on an extension of rational bounds for the t-tail area to arbitrary degrees of freedomSOMS, A. P.Communications in statistics. Theory and methods. 1984, Vol 13, Num 7, pp 887-891, issn 0361-0926Article

New representations for the doubly noncentral F-distribution and derived distributionsYOUN-MIN CHOU; ARTHUR, K. H; ROSENSTEIN, R. B et al.Communications in statistics. Theory and methods. 1985, Vol 14, Num 3, pp 527-534, issn 0361-0926Article

A generalized logistic approximation of the student t distributionGEORGE, E. O; EL-SAIDI, M; SINGH, K et al.Communications in statistics. Simulation and computation. 1986, Vol 15, Num 4, pp 1199-1208, issn 0361-0918Article

On the behavior of the MLE of the scale parameter of the student familyBORWEIN, P; GABOR, G.Communications in statistics. Theory and methods. 1984, Vol 13, Num 24, pp 3047-3057, issn 0361-0926Article

A series expansion for the cumulants of the χ-distribution and a cornish-fisher-expansion for the noncentrality parameter of the noncentral T-distributionDEUTLER, T.Communications in statistics. Simulation and computation. 1984, Vol 13, Num 4, pp 507-513, issn 0361-0918Article

On forecasting with univariate autoregressive processes: a Bayesian approachBROEMELING, L; LAND, M.Communications in statistics. Theory and methods. 1984, Vol 13, Num 11, pp 1305-1320, issn 0361-0926Article

RATIONAL BOUNDS FOR THE T-TAIL AREASOMS AP.1980; J. AMER. STATIST. ASS.; USA; DA. 1980; VOL. 75; NO 370; PP. 438-440; BIBL. 5 REF.Article

A CENTRAL T APPROXIMATION TO THE NONCENTRAL T DISTRIBUTIONKRAEMER HC; PAIK M.1979; TECHNOMETRICS; USA; DA. 1979; VOL. 21; NO 3; PP. 357-360; BIBL. 11 REF.Article

THE STUDENT DISTRIBUTION AND THE PRINCIPLE OF MAXIMUM ENTROPYPREDA VC.1982; ANN. INST. STAT. MATH.; ISSN 0373-5990; JPN; DA. 1982; VOL. 34; NO 2; PP. 335-338; BIBL. 8 REF.Article

AN ASYMPTOTIC EXPANSION FOR THE TAIL AREA OF THE T-DISTRIBUTION.SOMS AP.1976; J. AMER. STATIST. ASS.; U.S.A.; DA. 1976; VOL. 71; NO 355; PP. 728-730; BIBL. 7 REF.Article

Comparison of the inverse estimator with the classical estimator subject to a preliminary test in linear calibrationSHUKLA, G. K; DATTA, P.Journal of statistical planning and inference. 1985, Vol 12, Num 1, pp 93-102, issn 0378-3758Article

Quadratic approximation to linear loss integrals for some non-normal distributionsCHANDRASEKHAR DAS.IIE transactions. 1984, Vol 16, Num 3, pp 195-205, issn 0740-817XArticle

Adaptive M estimation of symmetric distribution locationKAPPENMAN, R. F.Communications in statistics. Theory and methods. 1986, Vol 15, Num 10, pp 2935-2951, issn 0361-0926Article

THE STUDENT T-DISTRIBUTION OF ANY DEGREE OF FREEDOM IS INFINITELY DIVISIBLE.GROSSWALD E.1976; Z. WAHRSCHEIN.-THEOR. VERWANDTE GEB.; DTSCH.; DA. 1976; VOL. 36; NO 2; PP. 103-103; BIBL. 7 REF.Article

THE PROBABILITY INTEGRAL FOR A BIVARIATE GENERALIZATION OF THE NON-CENTRAL TRAMIG PF; NELSON PR.1980; COMMUNIC. STATIST., SIMUL. COMPUT.; USA; DA. 1980; VOL. 9; NO 6; PP. 621-631; BIBL. 7 REF.Article

NUMERICAL EVALUATION OF AN EQUICORRELATED MULTIVARIATE NON-CENTRAL+DISTRIBUTIONNELSON PR.1981; COMMUN. STAT., SIMUL. COMPUT.; ISSN 0361-0918; USA; DA. 1981; VOL. 10; NO 1; PP. 41-50; BIBL. 2 P.Article

A SIMPLE APPROXIMATION FOR THE DOUBLY NONCENTRAL T-DISTRIBUTION.MUDHOLKAR GS; CHAUBEY YP.1976; COMMUNIC. STATIST., SIMUL. COMPUT.; U.S.A.; DA. 1976; VOL. 5; NO 2-3; PP. 85-92; BIBL. 1 P. 1/2Article

Approximate inference in location-scale regression modelsSWEETING, T. J.Journal of the American Statistical Association. 1984, Vol 79, Num 388, pp 847-852, issn 0162-1459Article

On some generalized Wishart expectationsJOARDER, A. H; ALI, M. A.Communications in statistics. Theory and methods. 1992, Vol 21, Num 1, pp 283-294, issn 0361-0926Article

Exact convolution of t distributions, with application to Bayesian inference for a normal mean with t prior distributionsTSAI-HUNG FAN; BERGER, J. O.Journal of statistical computation and simulation (Print). 1990, Vol 36, Num 4, pp 209-228, issn 0094-9655, 20 p.Article

Series for student's non-central t under exponential sampling with comments due to H. P. MulhollandBOWMAN, K. O; LAM, H. K; SHENTON, L. R et al.Communications in statistics. Simulation and computation. 1986, Vol 15, Num 3, pp 697-708, issn 0361-0918Article

An inequality for a measure of deviation in linear modelsMATHEW, T; NORDSTRÖM, K.The American statistician. 1997, Vol 51, Num 4, pp 344-349, issn 0003-1305Article

Cumulative distribution function of the non-central t distributionLENTH, R. V.Applied statistics. 1989, Vol 38, Num 1, pp 185-189, issn 0035-9254, 5 p.Article

  • Page / 18