Pascal and Francis Bibliographic Databases

Help

Search results

Your search

kw.\*:("Voronoï diagram")

Document Type [dt]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Publication Year[py]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Discipline (document) [di]

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Language

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Author Country

A-Z Z-A Frequency ↓ Frequency ↑
Export in CSV

Results 1 to 25 of 1149

  • Page / 46

Export

Selection :

  • and

A generic triangle-based data structure of the complete set of higher order Voronoi diagrams for emergency management : Distributed and Mobile Spatial ComputingLEE, Ickjai; LEE, Kyungmi.Computers, environment and urban systems. 2009, Vol 33, Num 2, pp 90-99, issn 0198-9715, 10 p.Article

Approximation of generalized Voronoi diagrams by ordinary Voronoi diagramsSUGIHARA, K.CVGIP. Graphical models and image processing. 1993, Vol 55, Num 6, pp 522-531, issn 1049-9652Article

The minimum equitable radius location problem with continuous demandSUZUKI, Atsuo; DREZNER, Zvi.European journal of operational research. 2009, Vol 195, Num 1, pp 17-30, issn 0377-2217, 14 p.Article

Sur les diagrammes de Delaunay et de Voronoï d'ordre k dans le plan et dans l'espace = On planar and spatial order-k Delaunay and Voronoi diagramsSchmitt, Dominique; Spehner, J.-C.1995, 278 p.Thesis

Proximity Graphs Inside Large Weighted GraphsABREGO, Bernardo M; FABILA-MONROY, Ruy; FERNANDEZ-MERCHANT, Silvia et al.Networks (New York, NY). 2013, Vol 61, Num 1, pp 29-39, issn 0028-3045, 11 p.Article

The Zermelo―Voronoi diagram: A dynamic partition problemBAKOLAS, Efstathios; TSIOTRAS, Panagiotis.Automatica (Oxford). 2010, Vol 46, Num 12, pp 2059-2067, issn 0005-1098, 9 p.Article

Constructing medial axis transform of planar domains with curved boundariesRAMANATHAN, M; GURUMOORTHY, B.Computer-aided design. 2003, Vol 35, Num 7, pp 619-632, issn 0010-4485, 14 p.Article

Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheresZHIGANG FAN; YUGONG WU; XUANHE ZHAO et al.Computational materials science. 2004, Vol 29, Num 3, pp 301-308, issn 0927-0256, 8 p.Article

A nearest neighbor sweep circle algorithm for computing discrete Voronoi tessellationsSCHUELLER, Albert.Journal of mathematical analysis and applications. 2007, Vol 336, Num 2, pp 1018-1025, issn 0022-247X, 8 p.Article

On Linear-Sized Farthest-Color Voronoi Diagrams : Foundations of Computer Science - Mathematical Foundations and Applications of Computer Science and AlgorithmsSANG WON BAE.IEICE transactions on information and systems. 2012, Vol 95, Num 3, pp 731-736, issn 0916-8532, 6 p.Article

Improved k-Nearest Neighbor Classifier for Biomedical Data Based on Convex Hull of Inversed Set of PointsSZYMANSKI, Zbigniew; DWULIT, Marek.Proceedings of SPIE, the International Society for Optical Engineering. 2010, Vol 7745, issn 0277-786X, isbn 9780819472358, 774510.1-774510.8Conference Paper

Finding a triangular mesh with a constant number of different edge lengths : New horizons in computingTANIGAWA, Shin-Ichi; KATOH, Naoki.IEICE transactions on information and systems. 2006, Vol 89, Num 8, pp 2364-2371, issn 0916-8532, 8 p.Article

The only correct method to evaluate roundnessKEWEI LAI.Computers & industrial engineering. 1995, Vol 28, Num 1, pp 203-204, issn 0360-8352Article

The incomplete Voronoi diagram and percolation analysisZANINETTI, L.Physics letters. A. 1994, Vol 189, Num 3, pp 167-170, issn 0375-9601Article

Efficient algorithm for placing a given number of base stations to cover a convex regionDAS, Gautam K; DAS, Sandip; NANDY, Subhas C et al.Journal of parallel and distributed computing (Print). 2006, Vol 66, Num 11, pp 1353-1358, issn 0743-7315, 6 p.Article

Vagueness: A Conceptual Spaces ApproachDOUVEN, Igor; DECOCK, Lieven; DIETZ, Richard et al.Journal of philosophical logic. 2013, Vol 42, Num 1, pp 137-160, issn 0022-3611, 24 p.Article

Gridding-based direct Fourier inversion of the three-dimensional ray transformPENCZEK, Pawel A; RENKA, Robert; SCHOMBERG, Hermann et al.Journal of the Optical Society of America. A, Optics, image science, and vision (Print). 2004, Vol 21, Num 4, pp 499-509, issn 1084-7529, 11 p.Article

Quick and robust initialization of level set methodsJIA, Diye; HUANG, Fenggang; WEN, Xiaofang et al.International Conference on Signal Processing. 2004, pp 2676-2679, isbn 0-7803-8406-7, 4 p.Conference Paper

Processing nertwork models of energy/environment systemsCHINNECK, J. W.Computers & industrial engineering. 1995, Vol 28, Num 1, pp 179-189, issn 0360-8352Article

Local calculation of Voronoi diagramsKÜHN, U.Information processing letters. 1998, Vol 68, Num 6, pp 307-312, issn 0020-0190Article

Constructing common base domain by cues from Voronoi diagramKWOK, Tsz-Ho; YUNBO ZHANG; WANG, Charlie C. L et al.Graphical models. 2012, Vol 74, Num 1, pp 152-163, issn 1524-0703, 12 p.Conference Paper

Diagramme de Laguerre = The Laguerre diagramBOROUCHAKI, Houman; FLANDRIN, Nicolas; BENNIS, Chakib et al.Comptes rendus. Mécanique. 2005, Vol 333, Num 10, pp 762-767, issn 1631-0721, 6 p.Article

Multiresolution Remeshing Using Weighted Centroidal Voronoi DiagramLIN, Chao-Hung; YAN, Chung-Ren; HSU, Ji-Hsen et al.Lecture notes in computer science. 2006, pp 295-301, issn 0302-9743, isbn 3-540-34379-2, 7 p.Conference Paper

Coverage restricted to an angleABELLANAS, Manuel; BAJUELOS, Antonio L; HURTADO, Ferran et al.Operations research letters. 2011, Vol 39, Num 4, pp 241-245, issn 0167-6377, 5 p.Article

Updating the topology of the dynamic Voronoi diagram for spheres in Euclidean d-dimensional spaceGAVRILOVA, M. L; ROKNE, J.Computer aided geometric design. 2003, Vol 20, Num 4, pp 231-242, issn 0167-8396, 12 p.Article

  • Page / 46